Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 32(1): 289-300, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33124427

ABSTRACT

Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sensitivity. We report the use of lithium hydroxide as a base in a routine hydrolysis procedure in order to effectively remove common ionization suppressants (such as glycolipids and glycerophospholipids) and introduce a source of lithium into the sample. In conjunction, an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone (THAP) is used to facilitate lithium adduct consolidation during the MALDI process. The result is a robust and high-throughput sphingolipid detection scheme, particularly of low-abundance ceramides. Application of our developed workflow includes the detection of differentially expressed liver sphingolipid profiles from a high-fat-induced obesity mouse model. We also demonstrate the method's effectiveness in detecting various sphingolipids in brain and plasma matrices. These results were corroborated with data from UHPLC HR MS/MS and MALDI FT-ICR, verifying the efficacy of the method application. Overall, we demonstrate a high-throughput workflow for sphingolipid analysis in various biological matrices by the use of MALDI TOF and lithium adduct consolidation.


Subject(s)
Lithium Compounds/chemistry , Liver/chemistry , Obesity/etiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sphingolipids/analysis , Acetophenones/chemistry , Animals , Chromatography, High Pressure Liquid , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Hydrolysis , Liver/metabolism , Mice, Inbred C57BL , Sphingolipids/chemistry , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...