Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Ther ; 39(7): 1360-1370, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28641995

ABSTRACT

PURPOSE: The purpose of this study is to evaluate safety, tolerability, and pharmacokinetic (PK) properties of amifampridine phosphate (Firdapse™) and its major inactive 3-N-acetyl metabolite in renally impaired and healthy individuals with slow acetylator (SA) and rapid acetylator (RA) phenotypes. METHODS: This was a Phase I, multicenter, open-label study of the PK properties and safety profile of amifampridine phosphate in individuals with normal, mild, moderate, or severely impaired renal function. Amifampridine phosphate was given as a single 10 mg (base equivalent) dose, and the plasma and urine PK properties of amifampridine and its 3-N-acetyl metabolite were determined. The safety profile was evaluated by monitoring adverse events (AEs), clinical laboratory tests, and physical examinations. FINDINGS: Amifampridine clearance was predominantly metabolic through N-acetylation, regardless of renal function in both acetylator phenotypes. In individuals with normal renal function, mean renal clearance represented approximately 3% and 18% of the total clearance of amifampridine in RA and SA, respectively. Large differences in amifampridine exposure were observed between acetylation phenotypes across renal function levels. Mean amifampridine exposure values of AUC0-∞ and Cmax were up to 8.8-fold higher in the SA group compared with the RA group across renal function levels. By comparison, mean AUC0-∞ was less affected by renal function within an acetylator group, only 2- to 3-fold higher in individuals with severe renal impairment (RI) compared with those with normal renal function. Exposure to amifampridine in the SA group with normal renal function was higher (AUC0-∞, approximately 1.8-fold; Cmax, approximately 4.1-fold) than the RA group with severe RI. Exposure to the inactive 3-N-acetyl metabolite was higher than amifampridine in both acetylator groups, independent of renal function level. The metabolite is cleared by renal excretion, and exposure was clearly dependent on renal function with 4.0- to 6.8-fold increases in AUC0-∞ from normal to severe RI. No new tolerability findings were observed. IMPLICATIONS: A single dose of 10 mg of amifampridine phosphate was well tolerated, independent of renal function and acetylator status. The results indicate that the PK profile of amifampridine is affected by metabolic acetylator phenotype to a greater extent than by renal function level, supporting Firdapse™ administration in individuals with RI in line with current labeling recommendations. Amifampridine should be dosed to effect per the individual patient need, altering administration frequency and dose in normal through severe RI. The therapeutic dose of amifampridine phosphate should be tailored to the individual patient needs by gradual dose titration up to the present maximum recommended dose (60-80 mg/day) or until dose-limiting AEs intervene to avoid overdosing and underdosing. EudraCT identifier: 2013-005349-35.


Subject(s)
4-Aminopyridine/analogs & derivatives , Kidney/metabolism , Potassium Channel Blockers/pharmacokinetics , Renal Insufficiency/metabolism , 4-Aminopyridine/adverse effects , 4-Aminopyridine/pharmacokinetics , Acetylation , Adult , Aged , Amifampridine , Female , Humans , Male , Middle Aged , Potassium Channel Blockers/adverse effects
2.
Clin Ther ; 37(7): 1555-63, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26101174

ABSTRACT

PURPOSE: Amifampridine (3,4-diaminopyridine) has been approved in the European Union for the treatment of Lambert-Eaton myasthenic syndrome. Amifampridine has a narrow therapeutic index, and supratherapeutic exposure has been associated with dose-dependent adverse events, including an increased risk for seizure. This study assessed the effect of food on the relative bioavailability of amifampridine in healthy subjects and informed on conditions that can alter exposure. METHODS: This randomized, open-labeled, 2-treatment, 2-period crossover study enrolled 47 healthy male and female subjects. Subjects were randomly assigned to receive 2 single oral doses of amifampridine phosphate salt (20 mg base equivalents per dose) under fed or fasted conditions separated by a washout period. Blood and urine samples for pharmacokinetic analyses were taken before and after dosing. Plasma concentrations of amifampridine and an inactive 3-N-acetyl metabolite were determined. The relative bioavailability values of amifampridine and metabolite were assessed based on the plasma PK parameters AUC0-∞, AUC0-t, and Cmax in the fed and fasted states using noncompartmental pharmacokinetic analysis. Parent drug and metabolite excretion were calculated from urinary concentrations. A food effect on bioavailability would be established if the 90% CI of the ratio of population geometric mean value of AUC0-∞, AUC0-t, or Cmax between fed and fasted administration was not within the bioequivalence range of 80% to 125%. Tolerability was assessed based on adverse-event reporting, clinical laboratory assessments, physical examination including vital sign measurements, 12-lead ECG, and concurrent medication use. FINDINGS: Food slowed and somewhat decreased the absorption of amifampridine. There was a decrease in exposure (Cmax, 44%; AUC, 20%) after oral administration of amifampridine phosphate salt in the presence of food, and mean Tmax was 2-fold longer in the fed state. The extent of exposure and plasma elimination half-life of the major metabolite was greater than those of amifampridine in the fed and fasted conditions. Mean AUCs in the fed and fasted states were slightly greater in women than men, with no difference in mean Cmax. Orally administered amifampridine was renally eliminated (>93%) as the parent compound and metabolite within 24 hours. Single oral doses of 20 mg of amifampridine phosphate salt were considered well tolerated in both the fed and fasted conditions. High intersubject variability (%CVs, >30%) in amifampridine pharmacokinetic parameter values was observed. IMPLICATIONS: At the intended dose under fasting conditions, amifampridine exposure may be increased. European Union Drug Regulating Authorities Clinical Trials identifier: 2011-000596-13.


Subject(s)
4-Aminopyridine/analogs & derivatives , Eating/physiology , Food-Drug Interactions/physiology , 4-Aminopyridine/adverse effects , 4-Aminopyridine/pharmacokinetics , Administration, Oral , Adult , Amifampridine , Area Under Curve , Biological Availability , Cross-Over Studies , Fasting/metabolism , Female , Half-Life , Healthy Volunteers , Humans , Male , Middle Aged , Phosphates/pharmacokinetics , Therapeutic Equivalency , Young Adult
3.
Pharmacol Res Perspect ; 3(1): e00099, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25692017

ABSTRACT

The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower C max, AUC, and shorter t 1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine.

SELECTION OF CITATIONS
SEARCH DETAIL
...