Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35205967

ABSTRACT

Fungal infections transmitted through the soil continue to pose a threat to a variety of horticultural and agricultural products, including tomato and chilli. The indiscriminate use of synthetic pesticides has resulted in a slew of unintended consequences for the surrounding ecosystem. To achieve sustainable productivity, experts have turned their attention to natural alternatives. Due to their biodegradability, varied mode of action, and minimal toxicity to non-target organisms, plant-derived protectants (PDPs) are being hailed as a superior replacement for plant pesticides. This review outlines PDPs' critical functions (including formulations) in regulating soil-borne fungal diseases, keeping tomato and chilli pathogens in the spotlight. An in-depth examination of the impact of PDPs on pathogen activity will be a priority. Additionally, this review emphasises the advantages of the in silico approach over conventional approaches for screening plants' secondary metabolites with target-specific fungicidal activity. Despite the recent advances in our understanding of the fungicidal capabilities of various PDPs, it is taking much longer for that information to be applied to commercially available pesticides. The restrictions to solving this issue can be lifted by breakthroughs in formulation technology, governmental support, and a willingness to pursue green alternatives among farmers and industries.

2.
Microorganisms ; 9(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924471

ABSTRACT

Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.

3.
Biology (Basel) ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932993

ABSTRACT

Gray mold disease caused by Botrytis cinerea is a damaging postharvest disease in tomato plants, and it is known to be a limiting factor in tomato production. This study aimed to evaluate antifungal activities of Vernonia amygdalina leaf extracts against B. cinerea and to screen the phytochemical compound in the crude extract that had the highest antifungal activity. In this study, crude extracts of hexane, dichloromethane, methanol, and water extracts with concentration levels at 100, 200, 300, 400, and 500 mg/mL were shown to significantly affect the inhibition of B. cinerea. Among the crude extracts, dichloromethane extract was shown to be the most potent in terms of antifungal activities. The SEM observation proved that the treatment altered the fungal morphology, which leads to fungal growth inhibition. For the in vivo bioassay, the fruits treated with dichloromethane extract at 400 and 500 mg/mL showed the lowest disease incidence with mild severity of infection. There were 23 chemical compounds identified in V. amygdalina dichloromethane extract using GCMS analysis. The top five major compounds were dominated by squalene (16.92%), phytol (15.05%), triacontane (11.31%), heptacosane (7.14%), and neophytadiene (6.28%). Some of these significant compounds possess high antifungal activities. This study proved that V. amygdalina from dichloromethane extract could be useful for inhibiting gray mold disease on tomato fruit and has potential as a natural antifungal agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...