Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 12225, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108507

ABSTRACT

Microphysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.


Subject(s)
Cell Communication , Coculture Techniques/methods , Dermis/metabolism , Endothelium, Vascular/metabolism , Microfluidic Analytical Techniques/methods , Pericytes/metabolism , Retina/metabolism , Cell Membrane Permeability , Cells, Cultured , Dermis/cytology , Endothelium, Vascular/cytology , Humans , Pericytes/cytology , Retina/cytology
2.
Sci Rep ; 10(1): 18045, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093518

ABSTRACT

Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula: see text]-10[Formula: see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.


Subject(s)
CRISPR-Cas Systems , Cell- and Tissue-Based Therapy/methods , Electroporation/methods , Gene Editing/methods , Gene Transfer Techniques , Microfluidics/methods , RNA, Messenger/genetics , T-Lymphocytes , Transfection/methods , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...