Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 222: 106297, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32739734

ABSTRACT

An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20-150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs) or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.


Subject(s)
Radiation Monitoring , Radioactive Pollutants , Environmental Monitoring , Gases , Geology , Nevada , Radioisotopes
2.
Sci Rep ; 9(1): 9537, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31267037

ABSTRACT

We demonstrate that although barometric pressures are complicated signals comprised of numerous frequencies, it is a subset of these frequencies that drive the overwhelming majority of gas transport in fractured rock. Using an inverse numerical analysis, we demonstrate that a single barometric component with seasonally modulated amplitude approximates gas transport due to a measured barometric signal. If past barometric tendencies are expected to continue at a location, the identification of this frequency can facilitate accurate long term predictions of barometrically induced gas transport negating the need to consider stochastic realizations of future barometric variations. Additionally, we perform an analytical analysis that indicates that there is a set of barometric frequencies, consistent with the inverse numerical analysis, with high production efficiency. Based on the corroborating inverse numerical and analytical analyses, we conclude that there is a set of dominant gas transport frequencies in barometric records.

3.
Ground Water ; 49(3): 403-14, 2011.
Article in English | MEDLINE | ID: mdl-20550585

ABSTRACT

Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity.


Subject(s)
Models, Theoretical , Water Supply , Fresh Water , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...