Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 616045, 2021.
Article in English | MEDLINE | ID: mdl-34093456

ABSTRACT

The bacterial lipid membrane, consisting both of fatty acid (acyl) tails and polar head groups, responds to changing conditions through alteration of either the acyl tails and/or head groups. This plasticity is critical for cell survival as it allows maintenance of both the protective nature of the membrane as well as functioning membrane protein complexes. Bacteria that live in fatty-acid rich environments, such as those found in the human host, can exploit host fatty acids to synthesize their own membranes, in turn, altering their physiology. Enterococcus faecalis is such an organism: it is a commensal of the mammalian intestine where it is exposed to fatty-acid rich bile, as well as a major cause of hospital infections during which it is exposed to fatty acid containing-serum. Within, we employed an untargeted approach to detect the most common phospholipid species of E. faecalis OG1RF via ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). We examined not only how the composition responds upon exposure to host fatty acids but also how deletion of genes predicted to synthesize major polar head groups impact lipid composition. Regardless of genetic background and differing basal lipid composition, all strains were able to alter their lipid composition upon exposure to individual host fatty acids. Specific gene deletion strains, however, had altered survival to membrane damaging agents. Combined, the enterococcal lipidome is highly resilient in response to both genetic and environmental perturbation, likely contributing to stress survival.

2.
Metabolomics ; 15(4): 53, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30919213

ABSTRACT

INTRODUCTION: Lipidomics can reveal global alterations in a broad class of molecules whose functions are innately linked to physiology. Monitoring changes in the phospholipid composition of biological membranes in response to stressors can aid the development of targeted therapies. However, exact quantitation of cardiolipins is not a straightforward task due to low ionization efficiencies and poor chromatographic separation of these compounds. OBJECTIVE: The aim of this study was to develop a quantitative method for the detection of cardiolipins and other phospholipids using both a targeted and untargeted analyses with a Q-Exactive. METHODS: HILIC chromatography and high-resolution mass spectrometry with parallel reaction monitoring was used to measure changes in lipid concentration. Internal standards and fragmentation techniques allowed for the reliable quantitation of lipid species including: lysyl-phosphatidylglycerol, phosphatidylglycerol, and cardiolipin. RESULTS: The untargeted analysis was capable to detecting 6 different phospholipid classes as well as free fatty acids. The targeted analysis quantified up to 23 cardiolipins, 10 phosphatidylglycerols and 10 lysyl-phosphatidylglycerols with detection limits as low as 50 nM. Biological validation with Enterococcus faecalis demonstrates sensitivity in monitoring the incorporation of exogenously supplied free fats into membrane phospholipids. When supplemented with oleic acid, the amount of free oleic acid in the membrane was 100 times greater and the concentration of polyunsaturated cardiolipin increased to over 3.5 µM compared to controls. CONCLUSIONS: This lipidomics method is capable of targeted quantitation for challenging biologically relevant cardiolipins as well as broad, untargeted lipid profiling.


Subject(s)
Lipidomics/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Cardiolipins/analysis , Chromatography, High Pressure Liquid/methods , Enterococcus faecalis/metabolism , Fatty Acids, Nonesterified/analysis , Lysine/analysis , Phosphatidylglycerols/analysis , Phospholipids/analysis
3.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29079613

ABSTRACT

Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection.IMPORTANCEEnterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage.


Subject(s)
Enterococcus faecalis/drug effects , Fatty Acids/chemistry , Fatty Acids/pharmacology , Enterococcus faecalis/growth & development , Enterococcus faecalis/ultrastructure , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Microscopy, Electron, Scanning
4.
Nucleic Acids Res ; 45(7): 4006-4020, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27903909

ABSTRACT

Many bacterial type I toxin mRNAs possess a long 5΄ untranslated region (UTR) that serves as the target site of the corresponding antitoxin sRNA. This is the case for the zorO-orzO type I system where the OrzO antitoxin base pairs to the 174-nucleotide zorO 5΄ UTR. Here, we demonstrate that the full-length 5΄ UTR of the zorO type I toxin hinders its own translation independent of the sRNA whereas a processed 5΄ UTR (zorO Δ28) promotes translation. The full-length zorO 5΄ UTR folds into an extensive secondary structure sequestering the ribosome binding site (RBS). Processing of the 5΄ UTR does not alter the RBS structure, but opens a large region (EAP region) located upstream of the RBS. Truncation of this EAP region impairs zorO translation, but this defect can be rescued upon exposing the RBS. Additionally, the region spanning +35 to +50 of the zorO mRNA is needed for optimal translation of zorO. Importantly, the positive and negative effects on translation imparted by the 5΄ UTR can be transferred onto a reporter gene, indicative that the 5΄ UTR can solely drive regulation. Moreover, we show that the OrzO sRNA can inhibit zorO translation via base pairing to the of the EAP region.


Subject(s)
5' Untranslated Regions , Bacterial Toxins/genetics , Escherichia coli Proteins/genetics , Protein Biosynthesis , Regulatory Sequences, Ribonucleic Acid , Bacterial Toxins/metabolism , Binding Sites , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Mutation , RNA Processing, Post-Transcriptional , RNA, Small Untranslated/metabolism , Ribosomes/metabolism
5.
Appl Environ Microbiol ; 82(14): 4410-4420, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27208105

ABSTRACT

UNLABELLED: Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract that can cause nosocomial infections in immunocompromised humans. The hallmarks of this organism are its ability to survive in a variety of stressful habitats and, in particular, its ability to withstand membrane damage. One strategy used by E. faecalis to protect itself from membrane-damaging agents, including the antibiotic daptomycin, involves incorporation of exogenous fatty acids from bile or serum into the cell membrane. Additionally, the response regulator LiaR (a member of the LiaFSR [lipid II-interacting antibiotic response regulator and sensor] system associated with cell envelope stress responses) is required for the basal level of resistance E. faecalis has to daptomycin-induced membrane damage. This study aimed to determine if membrane fatty acid changes could provide protection against membrane stressors in a LiaR-deficient strain of E. faecalis We noted that despite the loss of LiaR, the organism readily incorporated exogenous fatty acids into its membrane, and indeed growth in the presence of exogenous fatty acids increased the survival of LiaR-deficient cells when challenged with a variety of membrane stressors, including daptomycin. Combined, our results suggest that E. faecalis can utilize both LiaR-dependent and -independent mechanisms to protect itself from membrane damage. IMPORTANCE: Enterococcus faecalis is responsible for a significant number of nosocomial infections. Worse, many of the antibiotics used to treat E. faecalis infection are no longer effective, as this organism has developed resistance to them. The drug daptomycin has been successfully used to treat some of these resistant strains; however, daptomycin-resistant isolates have been identified in hospitals. Many daptomycin-resistant isolates are found to harbor mutations in the genetic locus liaFSR, which is involved in membrane stress responses. Another mechanism shown to increase tolerance to daptomycin involves the incorporation of exogenous fatty acids from host fluids like serum or bile. This improved tolerance was found to be independent of liaFSR and suggests that there are additional ways to impact sensitivity to daptomycin. Thus, further studies are needed to understand how host fatty acid sources can influence antibiotic susceptibility.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Daptomycin/pharmacology , Enterococcus faecalis/drug effects , Fatty Acids/metabolism , Transcription Factors/metabolism , Cell Membrane/metabolism , Drug Resistance, Bacterial , Enterococcus faecalis/metabolism , Gene Deletion , Gene Expression Regulation , Humans , Microbial Viability/drug effects , Transcription Factors/genetics
6.
Appl Environ Microbiol ; 80(20): 6527-38, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25128342

ABSTRACT

Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance.


Subject(s)
Cell Membrane/chemistry , Enterococcus faecalis/chemistry , Enterococcus faecalis/physiology , Fatty Acids/pharmacokinetics , Adaptation, Biological , Anti-Bacterial Agents/pharmacology , Bile , Bile Acids and Salts/pharmacology , Cell Membrane/metabolism , Daptomycin/pharmacology , Drug Resistance, Bacterial , Enterococcus faecalis/drug effects , Fatty Acids/analysis , Fatty Acids/metabolism , Linoleic Acid/pharmacology , Oleic Acid/pharmacology
7.
J Immunol ; 185(10): 5751-61, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20937846

ABSTRACT

Fucosyltransferase-IV and -VII double knockout (FtDKO) mice reveal profound impairment in T cell trafficking to lymph nodes (LNs) due to an inability to synthesize selectin ligands. We observed an increase in the proportion of memory/effector (CD44(high)) T cells in LNs of FtDKO mice. We infected FtDKO mice with lymphocytic choriomeningitis virus to generate and track Ag-specific CD44(high)CD8 T cells in secondary lymphoid organs. Although frequencies were similar, total Ag-specific effector CD44(high)CD8 T cells were significantly reduced in LNs, but not blood, of FtDKO mice at day 8. In contrast, frequencies of Ag-specific memory CD44(high)CD8 T cells were up to 8-fold higher in LNs of FtDKO mice at day 60. Because wild-type mice treated with anti-CD62L treatment also showed increased frequencies of CD44(high) T cells in LNs, we hypothesized that memory T cells were preferentially retained in, or preferentially migrated to, FtDKO LNs. We analyzed T cell entry and egress in LNs using adoptive transfer of bone fide naive or memory T cells. Memory T cells were not retained longer in LNs compared with naive T cells; however, T cell exit slowed significantly as T cell numbers declined. Memory T cells were profoundly impaired in entering LNs of FtDKO mice; however, memory T cells exhibited greater homeostatic proliferation in FtDKO mice. These results suggest that memory T cells are enriched in LNs with T cell deficits by several mechanisms, including longer T cell retention and increased homeostatic proliferation.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Chemotaxis, Leukocyte/immunology , Immunologic Memory , Lymph Nodes/cytology , Selectins/immunology , T-Lymphocyte Subsets/cytology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell Separation , Flow Cytometry , Fucosyltransferases/deficiency , Hyaluronan Receptors/immunology , Ligands , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocyte Subsets/immunology
8.
PLoS One ; 5(6): e10973, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20532047

ABSTRACT

BACKGROUND: Selectin mediated tethering represents one of the earliest steps in T cell extravasation into lymph nodes via high endothelial venules and is dependent on the biosynthesis of sialyl Lewis X (sLe(x)) ligands by several glycosyltransferases, including two fucosyltransferases, fucosyltransferase-IV and -VII. Selectin mediated binding also plays a key role in T cell entry to inflamed organs. METHODOLOGY/PRINCIPAL FINDINGS: To understand how loss of selectin ligands (sLe(x)) influences T cell migration to the lung, we examined fucosyltransferase-IV and -VII double knockout (FtDKO) mice. We discovered that FtDKO mice showed significant increases (approximately 5-fold) in numbers of naïve T cells in non-inflamed lung parenchyma with no evidence of induced bronchus-associated lymphoid tissue. In contrast, activated T cells were reduced in inflamed lungs of FtDKO mice following viral infection, consistent with the established role of selectin mediated T cell extravasation into inflamed lung. Adoptive transfer of T cells into FtDKO mice revealed impaired T cell entry to lymph nodes, but selective accumulation in non-lymphoid organs. Moreover, inhibition of T cell entry to the lymph nodes by blockade of L-selectin, or treatment of T cells with pertussis toxin to inhibit chemokine dependent G-coupled receptor signaling, also resulted in increased T cells in non-lymphoid organs. Conversely, inhibition of T cell egress from lymph nodes using FTY720 agonism of S1P1 impaired T cell migration into non-lymphoid organs. CONCLUSIONS/SIGNIFICANCE: Taken together, our results suggest that impaired T cell entry into lymph nodes via high endothelial venules due to genetic deficiency of selectin ligands results in the selective re-distribution and accumulation of T cells in non-lymphoid organs, and correlates with their increased frequency in the blood. Re-distribution of T cells into organs could potentially play a role in the initiation of T cell mediated organ diseases.


Subject(s)
Lung/cytology , Selectins/metabolism , T-Lymphocytes/cytology , Animals , Fingolimod Hydrochloride , Immunologic Memory , Ligands , Lung/drug effects , Lung/metabolism , Mice , Mice, Knockout , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...