Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(23): 4517-4548, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34778896

ABSTRACT

In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.


Subject(s)
COVID-19 , Pandemics , Ecosystem , Humans , Point-of-Care Systems , SARS-CoV-2
2.
Anal Chem ; 93(27): 9383-9389, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34192456

ABSTRACT

This paper describes the design, fabrication, and feasibility of paper-based optode devices (PODs) for sensing potassium selectively in biological fluids. PODs operate in exhaustive mode and integrate with a handheld, smartphone-connected optical reader. This integrated measuring system provides significant advantages over traditional optode membranes and other paper-based designs, by obtaining a linear optical response to potassium concentration via a simple, stackable design and by harnessing a smartphone to provide an easy-to-use interface, thus enabling remote monitoring of diseases.


Subject(s)
Potassium , Smartphone
3.
PLoS One ; 14(3): e0212753, 2019.
Article in English | MEDLINE | ID: mdl-30835755

ABSTRACT

Poor intra-facility maternity care is a major contributor to maternal mortality in low- and middle-income countries. Close to 830 women die each day due to preventable maternal complications, partly due to the increasing number of women giving birth in health facilities that are not adequately resourced to manage growing patient populations. Barriers to adequate care during the 'last mile' of healthcare delivery are attributable to deficiencies at multiple levels: education, staff, medication, facilities, and delays in receiving care. Moreover, the scope and multi-scale interdependence of these factors make individual contributions of each challenging to analyze, particularly in settings where basic data registration is often lacking. To address this need, we have designed and implemented a novel systems-level and dynamic mathematical model that simulates the impact of hospital resource allocations on maternal mortality rates at Mnazi Mmoja Hospital (MMH), a referral hospital in Zanzibar, Tanzania. The purpose of this model is to provide a rigorous and flexible tool that enables hospital administrators and public health officials to quantitatively analyze the impact of resource constraints on patient outcomes within the maternity ward, and prioritize key areas for further human or capital investment. Currently, no such tool exists to assist administrators and policy makers with effective resource allocation and planning. This paper describes the structure and construct of the model, provides validation of the assumptions made with anonymized patient data and discusses the predictive capacity of our model. Application of the model to specific resource allocations, maternal treatment plans, and hospital loads at MMH indicates through quantitative results that medicine stocking schedules and staff allocations are key areas that can be addressed to reduce mortality by up to 5-fold. With data-driven evidence provided by the model, hospital staff, administration, and the local ministries of health can enact policy changes and implement targeted interventions to improve maternal health outcomes at MMH. While our model is able to determine specific gaps in resources and health care delivery specifically at MMH, the model should be viewed as an additional tool that may be used by other facilities seeking to analyze and improve maternal health outcomes in resource constrained environments.


Subject(s)
Delivery of Health Care , Maternal Health , Models, Theoretical , Referral and Consultation , Adult , Female , Humans , Pregnancy , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...