Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37034630

ABSTRACT

Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.

2.
Nat Commun ; 12(1): 6578, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772934

ABSTRACT

Complex schooling behaviors result from local interactions among individuals. Yet, how sensory signals from neighbors are analyzed in the visuomotor stream of animals is poorly understood. Here, we studied aggregation behavior in larval zebrafish and found that over development larvae transition from overdispersed groups to tight shoals. Using a virtual reality assay, we characterized the algorithms fish use to transform visual inputs from neighbors into movement decisions. We found that young larvae turn away from virtual neighbors by integrating and averaging retina-wide visual occupancy within each eye, and by using a winner-take-all strategy for binocular integration. As fish mature, their responses expand to include attraction to virtual neighbors, which is based on similar algorithms of visual integration. Using model simulations, we show that the observed algorithms accurately predict group structure over development. These findings allow us to make testable predictions regarding the neuronal circuits underlying collective behavior in zebrafish.


Subject(s)
Larva/physiology , Mass Gatherings , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Decision Making/physiology , Movement , Neural Networks, Computer , Neurons/physiology , Social Behavior , Swimming , Virtual Reality , Visual Perception/physiology
3.
Sci Adv ; 7(41): eabi7460, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34613782

ABSTRACT

It is not understood how changes in the genetic makeup of individuals alter the behavior of groups of animals. Here, we find that, even at early larval stages, zebrafish regulate their proximity and alignment with each other. Two simple visual responses, one that measures relative visual field occupancy and one that accounts for global visual motion, suffice to account for the group behavior that emerges. Mutations in genes known to affect social behavior in humans perturb these simple reflexes in individual larval zebrafish and change their emergent collective behaviors in the predicted fashion. Model simulations show that changes in these two responses in individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors reflect in part genetically defined primitive sensorimotor "motifs," which are evident even in young larvae.

4.
Elife ; 92020 08 25.
Article in English | MEDLINE | ID: mdl-32838839

ABSTRACT

The social interactions underlying group foraging and their benefits have been mostly studied using mechanistic models replicating qualitative features of group behavior, and focused on a single resource or a few clustered ones. Here, we tracked groups of freely foraging adult zebrafish with spatially dispersed food items and found that fish perform stereotypical maneuvers when consuming food, which attract neighboring fish. We then present a mathematical model, based on inferred functional interactions between fish, which accurately describes individual and group foraging of real fish. We show that these interactions allow fish to combine individual and social information to achieve near-optimal foraging efficiency and promote income equality within groups. We further show that the interactions that would maximize efficiency in these social foraging models depend on group size, but not on food distribution, and hypothesize that fish may adaptively pick the subgroup of neighbors they 'listen to' to determine their own behavior.


Subject(s)
Feeding Behavior/physiology , Social Behavior , Spatial Behavior/physiology , Animals , Female , Male , Models, Spatial Interaction , Zebrafish/physiology
5.
Cell Rep ; 29(12): 3775-3784.e4, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851911

ABSTRACT

The unique profile of strong and weak cognitive traits characterizing each individual is of a fundamental significance, yet their neurophysiological underpinnings remain elusive. Here, we present intracranial electroencephalogram (iEEG) measurements in humans pointing to resting-state cortical "noise" as a possible neurophysiological trait that limits visual recognition capacity. We show that amplitudes of slow (<1 Hz) spontaneous fluctuations in high-frequency power measured during rest were predictive of the patients' performance in a visual recognition 1-back task (26 patients, total of 1,389 bipolar contacts pairs). Importantly, the effect was selective only to task-related cortical sites. The prediction was significant even across long (mean distance 4.6 ± 2.8 days) lags. These findings highlight the level of the individuals' internal "noise" as a trait that limits performance in externally oriented demanding tasks.


Subject(s)
Brain Mapping/methods , Brain/physiology , Recognition, Psychology , Rest/physiology , Task Performance and Analysis , Adult , Female , Humans
6.
PLoS One ; 13(3): e0193049, 2018.
Article in English | MEDLINE | ID: mdl-29513700

ABSTRACT

Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie's Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data.


Subject(s)
Algorithms , Behavior, Animal/physiology , Models, Statistical , Social Behavior , Animals , Ants/physiology , Computer Simulation , Fishes/physiology , Motion
7.
Proc Natl Acad Sci U S A ; 114(38): 10149-10154, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874581

ABSTRACT

Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an "active" mode, in which they are sensitive to the swimming patterns of conspecifics, and a "passive" mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors' behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multimodal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species.


Subject(s)
Models, Biological , Social Behavior , Swimming , Zebrafish , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...