Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(30): 14564-73, 2006 Aug 03.
Article in English | MEDLINE | ID: mdl-16869556

ABSTRACT

The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiple-scattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 +/- 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer.

2.
J Phys Chem B ; 110(26): 12874-83, 2006 Jul 06.
Article in English | MEDLINE | ID: mdl-16805585

ABSTRACT

The synthesis and characterization of the clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) are described. These mixed-ligand, sub-nanometer clusters, prepared via exchange of dodecanethiol onto phosphine-halide gold clusters, show enhanced stability relative to the parent. The characterization of these clusters features the precise determination of the number of gold atoms in the cluster cores using high-angle annular dark-field scanning transmission electron microscopy, allowing the assignment of 13 gold atoms (+/-3 atoms) to the composition of both cluster molecules. Electrochemical and optical measurements reveal discrete molecular orbital levels and apparent energy gaps of 1.6-1.7 eV for the two cluster molecules. The electrochemical measurements further indicate that the Au13[PPh3]4[S(CH2)11CH3]2Cl2 cluster undergoes an overall two-electron reduction. The electrochemical and spectroscopic properties of the two Au13 cluster molecules are compared with those of a secondary synthetic product, which proved to be larger Au thiolate-derivatized monolayer-protected clusters with an average core of Au180. The latter shows behavior fully consistent with the adoption of metallic-like properties.

3.
Langmuir ; 21(12): 5492-500, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15924480

ABSTRACT

This paper describes the effects of oxidative electronic charging of the Au cores of the monolayer-protected clusters (MPCs), Au140(S(CH2)5CH3)53 and Au38(SCH2CH2Ph)24, on nuclear magnetic resonance (NMR) spectra of their monolayer ligand shells. Previously unresolved fine structure in the 13C NMR hexanethiolate methyl and C5 methylene resonances is seen in spectra of solutions of monodisperse Au140(S(CH2)5CH3)53 MPCs, reflecting magnetically inequivalent ligand sites. Incremented increases in positive cluster core charge, effected by electrochemical charging, cause the spectral fine structure of the methyl resonance to coalesce, becoming a single peak at the Au140(3+) charge state. The spectral changes are reversible; charging back to the original core charge state regenerates the methyl 13C resonance fine structure. Adding an equimolar quantity of a Au(I) thiolate complex, Au(I)[SCH2(C6H4)C(CH3)3], to an uncharged Au140(S(CH2)5CH3)53 MPC solution in d2-methylene chloride causes partial spectral coalescence. 13C NMR spectra of Au38(SCH2CH2Ph)24 MPCs exhibit roughly comparable spectral changes upon positive core charging to the '0', '+1', and '+2' states. The NMR results indicate that exchange between magnetically inequivalent sites occurs at rates of 100 to 400 s(-1), a rate believed to be too fast to be accountable by actual exchanges of ligands between different sites on the Au core. We also describe changes in core electronic spectra of Au140(S(CH2)5CH3)53 induced by positive charging, measured using spectroelectrochemistry.

4.
J Phys Chem B ; 109(40): 18852-9, 2005 Oct 13.
Article in English | MEDLINE | ID: mdl-16853426

ABSTRACT

A room-temperature redox molten salt for the study of electron transfers in semisolid media, based on combining bis(cyclopentadienyl)cobalt with oligomeric polyether counterions, [Cp2Co](MePEG350SO3), is reported. The transport properties of the new molten salt can be varied (plasticized) by varying the polyether content. The charge transport rate during voltammetric reduction of the ionically conductive [Cp2Co](MePEG350SO3) molten salt exceeds the actual physical diffusivity of [Cp2Co]+ because of rapid [Cp2Co](+/0) electron self-exchanges. The measured [Cp2Co](+/0) electron self-exchange rate constants (k(EX)) are proportional to the diffusion coefficients (D(CION)) of the counterions in the melt. The electron-transfer activation barrier energies are also close to those of ionic diffusion but are larger than those derived from optical intervalent charge-transfer results. Additionally, the [Cp2Co](+/0) rate constant results are close to those of dissimilar redox moieties in molten salts where D(CION) values are similar. All of these characteristics are consistent with the rates of electron transfers of [Cp2Co](+/0) (and the other donor-acceptor pairs) being controlled not by the intrinsic electron-transfer rates but by the rate of relaxation of the ion atmosphere around the reacting pair. In the low driving force regime of mixed-valent concentration gradients, the ion atmosphere relaxation is competitive with electron transfer. The results support the generality of the recently proposed model of ionic atmosphere relaxation control of electron transfers in ionically conductive, semisolid materials.

5.
Langmuir ; 20(16): 6864-70, 2004 Aug 03.
Article in English | MEDLINE | ID: mdl-15274597

ABSTRACT

The nucleation-growth-passivation Brust reaction has been modified so as to enrich the product in useful quantities of a 38-atom gold nanoparticle coated with a hexanethiolate monolayer. Two modifications are described, using -78 degrees C reduction temperature and a hyperexcess of thiol. Compositional evidence is presented that establishes the product as a Au38(C6)24 hexanethiolate monolayer protected cluster (MPC), based on transmission electron microscopy, laser ionization-desorption mass spectrometry, thermogravimetric analysis, and elemental analysis. Reverse phase HPLC confirms the relatively good monodispersity of the MPC products, but high-resolution double-column HPLC reveals that the MPCs are a mixture of closely related but chromatographically distinct products. Voltammetry, low energy spectrophotometry, and spectroelectrochemistry reveal, respectively, a 1.6 eV electrochemical energy gap between the first oxidation and the first reduction, an optical HOMO-LUMO energy absorbance edge at 1.3 eV, and a bleaching of optical absorbance near the 1.3 eV band edge that accompanies electrochemical oxidation of the nanoparticle.

6.
J Am Chem Soc ; 126(19): 6193-9, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15137785

ABSTRACT

This paper describes electrochemical and spectroscopic properties of a well-characterized, synthetically accessible, 1.1 nm diam Au nanoparticle, Au(38)(PhC(2)S)(24), where PhC(2)S is phenylethylthiolate. Properties of other Au(38) nanoparticles made by exchanging the monolayer ligands with different thiolate ligands are also described. Voltammetry of the Au(38) nanoparticles in CH(2)Cl(2) reveals a 1.62 V energy gap between the first one-electron oxidation and the first reduction. Based on a charging energy correction of ca. 0.29 V, the indicated HOMO-LUMO gap energy is ca. 1.33 eV. At low energies, the optical absorbance spectrum includes peaks at 675 nm (1.84 eV) and 770 nm (1.61 eV) and an absorbance edge at ca. 1.33 eV that gives an optical HOMO-LUMO gap energy that is consistent with the electrochemical estimate. The absorbance at lowest energy is bleached upon electrochemical depletion of the HOMO level. The complete voltammetry contains two separated doublets of oxidation waves, indicating two distinct molecular orbitals, and two reduction steps. The ligand-exchanged nanoparticle Au(38)(PEG(135)S)(13)(PhC(2)S)(11), where PEG(135)S is -SCH(2)CH(2)OCH(2)CH(2)OCH(3), exhibits a broad (1.77-0.89 eV) near-IR photoluminescence band resolvable into maxima at 902 nm (1.38 eV) and 1025 nm (1.2 eV). Much of the photoluminescence occurs at energies less than the HOMO-LUMO gap energy. A working model of the energy level structure of the Au(38) nanoparticle is presented.

7.
J Am Chem Soc ; 125(4): 1096-103, 2003 Jan 29.
Article in English | MEDLINE | ID: mdl-12537510

ABSTRACT

The sorption of CO(2) into the highly viscous, semisolid hybrid redox polyether melt, [Co(phenanthroline)(3)](MePEG-SO(3))(2), where MePEG-SO(3) is a MW 350 polyether-tailed sulfonate anion, remarkably accelerates charge transport in this molten salt material. Electrochemical measurements show that as CO(2) pressure is increased from 0 to 800 psi (54 atm) at 23 degrees C, the physical diffusion coefficient D(PHYS) of the Co(II) species, the rate constant k(EX) for Co(II/I) electron self-exchange, and the physical diffusion coefficient of the counterion D(COUNTERION) all increase, from 4.3 x 10(-10) to 6.4 x 10(-9) cm(2)/s, 4.1 x 10(6) to 1.6 x 10(7) M(-1) s(-1), and 3.3 x 10(-9) to 1.6 x 10(-8) cm(2)/s, respectively. Plots of log(k(EX)) versus log(D(PHYS)) and of log(k(EX)) versus log(D(COUNTERION)) are linear, showing that electron self-exchange rate constants are closely associated with processes that also govern D(PHYS) and D(COUNTERION). Slopes of the plots are 0.68 and 0.98, respectively, indicating a better linear correlation between k(EX) and D(COUNTERION). The evidence indicates that k(EX) can be controlled by relaxation of the counterion atmosphere about the Co complexes in the semisolid redox polyether melts. Because the counterion relaxation is in turn controlled by polyether "solvent" fluctuations, this is a new form of solvent dynamics control of electron transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...