Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(5): 2777-2784, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-34734942

ABSTRACT

A new experimental method has been developed to record photoelectron spectra based on the well-established pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy technique and inspired by the data treatment employed in slow photoelectron spectroscopy. This method has been successfully applied to two well-known systems: the X+2Πg,1/2(v+ = 0) ← X1Σ+g(v = 0) and the X+1Σ+(v+ = 2) ← X2Π1/2(v = 0) ionizing transitions of CO2 and NO, respectively. The first results highlight several advantages of our technique such as an improved signal-to-noise ratio without degrading the spectral resolution and a direct field-free energy determination. The data obtained for NO indicate that this method might be useful for studying field-induced autoionization processes.

2.
J Phys Chem A ; 125(13): 2764-2769, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33783226

ABSTRACT

The NH2 radical is a key component in many astrophysical environments, both in its neutral and cationic forms, being involved in the formation of complex N-bearing species. To gain insight into the photochemical processes into which it operates and to model accurately the ensuing chemical networks, the knowledge of its photoionization efficiency is required, but no quantitative determination has been carried out so far. Combining a flow-tube H-abstraction radical source, a double imaging photoelectron-photoion spectrometer, and a vacuum-ultraviolet synchrotron excitation, the absolute photoionization cross section of the amino radical has been measured in the present work for the first time at two photon energies: σionNH2(12.7 eV) = 7.8 ± 2.2 Mb and σionNH2(13.2 eV) = 7.8 ± 2.0 Mb. These values have been employed to scale the total ion yield previously recorded by Gibson et al. ( J. Chem. Phys. 1985, 83, 4319-4328). The resulting cross section curve spanning the 11.1-15.7 eV energy range will help in refining the current astrophysical models.

3.
J Chem Phys ; 153(7): 074308, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32828110

ABSTRACT

The vacuum-ultraviolet threshold photoelectron spectrum of methyl isocyanate CH3NCO has been recorded from 10.4 eV to 12 eV using synchrotron radiation and a coincidence technique allowing for a mass-discrimination of the photoelectron signal. A significant improvement is achieved over previous investigations as this experimental setup leads to a much more resolved spectrum. Ten sharp peaks and a broad feature spanning 1.2 eV were recorded. This spectrum consists of X̃+ 2A″←X̃ 1A' and Ã+ 2A'←X̃ 1A' ionizing transitions. For the former, the adiabatic ionization energy was determined experimentally to be 10.596(6) eV; for the latter, its value was estimated to be 10.759(50) eV. Seven sharp peaks could be assigned to vibrational modes of the cation X̃+ 2A″ and neutral X̃ 1A' ground electronic states involving only the NCO group atoms. Theoretical modeling of the threshold photoelectron spectrum has proven difficult as methyl isocyanate is a non-rigid molecule displaying large amplitude internal rotation of the methyl group and ∠CNC bending mode, leading to the quasi-symmetry. With the help of ab initio calculations, a theoretical model in which these two large amplitude motions are included in addition to the five small amplitude vibrational modes involving NCO group atoms is proposed. Comparison with the experimental spectrum shows that the broad feature and the strongest peak line positions are well accounted for; their intensities are also fairly well reproduced after adjusting a few parameters.

4.
Phys Chem Chem Phys ; 22(22): 12496-12501, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32452473

ABSTRACT

The photoelectron spectroscopy of CH2NC (isocyanomethyl) radical species is investigated for the first time between 9.3 and 11.2 eV in the vicinity of the first photoionizing transition X+1A1← X 2B1. The experiment combines a microwave discharge flow-tube reactor to produce the radicals through the CH3NC + F → CH2NC + HF reaction, a VUV synchrotron radiation excitation, and a double imaging electron/ion coincidence spectrometer which allows the recording of mass-selected threshold photoelectron spectra. Assignment of the observed vibrational structure of the CH2NC+ cation is guided by ab initio calculations and Franck-Condon simulations. From the experimental spectrum, the first adiabatic ionization energy of the CH2NC radical is measured as 9.439(6) eV. Fundamental wavenumbers are determined for several vibrational modes of the cation: [small nu, Greek, tilde]1+(CH2 symmetric stretch) = 2999(80) cm-1, [small nu, Greek, tilde]2+(NC stretch) = 1925(40) cm-1, [small nu, Greek, tilde]4+(H2C-N stretch) = 1193(40) cm-1, [small nu, Greek, tilde]6+(CNC out-of-plane bend) = 237(50) cm-1, and [small nu, Greek, tilde]8+(CH2 rock) = 1185(60) cm-1.

5.
J Chem Phys ; 152(4): 041105, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32007030

ABSTRACT

The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2 + cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2 + ground state is of X+ Σg-4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg +)=12.440(10) eV, Ei(X+ 4Σg -←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a - X) = 0.079(10) eV and ΔE(a+ - X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2 + cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2 +(Πu2))=2019.9(10) kJ mol-1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...