Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(24): 6668-6680, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32437159

ABSTRACT

Inverted/reverse hexagonal (HII) phases are of special interest in several fields of research, including nanomedicine. We used molecular dynamics (MD) simulation to study HII systems composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoyloleoylphosphatidylethanolamine (POPE) at several hydration levels and temperatures. The effect of the hydration level on several HII structural parameters, including deuterium order parameters, was investigated. We further used MD simulations to estimate the maximum hydrations of DOPE and POPE HII lattices at several given temperatures. Finally, the effect of acyl chain unsaturation degree on the HII structure was studied via comparing the DOPE with POPE HII systems. In addition to MD simulations, we used deuterium nuclear magnetic resonance (2H NMR) and small-angle X-ray scattering (SAXS) experiments to measure the DOPE acyl chain order parameters, lattice plane distances, and the water core radius in HII phase DOPE samples at several temperatures in the presence of excess water. Structural parameters calculated from MD simulations are in excellent agreement with the experimental data. Dehydration decreases the radius of the water core. An increase in hydration level slightly increased the deuterium order parameter of lipids acyl chains, whereas an increase in temperature decreased it. Lipid cylinders undulated along the cylinder axis as a function of hydration level. The maximum hydration levels of PE HII phases at different temperatures were successfully predicted by MD simulations based on a single experimental measurement for the lattice plane distance in the presence of excess water. An increase in temperature decreases the maximum hydration and consequently the radius of the water core and lattice plane distances. Finally, DOPE formed HII structures with a higher curvature compared to POPE, as expected. We propose a general protocol for constructing computational HII systems that correspond to the experimental systems. This protocol could be used to study HII systems composed of molecules other than the PE systems used here and to improve and validate force field parameters by using the target data in the HII phase.


Subject(s)
Phosphatidylcholines , Phosphatidylethanolamines , Lipid Bilayers , Magnetic Resonance Spectroscopy , Scattering, Small Angle , Temperature , X-Ray Diffraction
2.
Osteoarthritis Cartilage ; 24(5): 827-34, 2016 May.
Article in English | MEDLINE | ID: mdl-26708258

ABSTRACT

OBJECTIVE: To identify novel biomarker(s) for knee osteoarthritis (OA) using a metabolomics approach. METHOD: We utilized a two-stage case-control study design. Plasma samples were collected from knee OA patients and healthy controls after 8-h fasting and metabolically profiled using a targeted metabolomics assay kit. Linear regression was used to identify novel metabolic markers for OA. Receiver operating characteristic (ROC) analysis was used to examine diagnostic values. Gene expression analysis was performed on human cartilage to explore the potential mechanism for the novel OA marker(s). RESULTS: Sixty-four knee OA patients and 45 controls were included in the discovery stage and 72 knee OA patients and 76 age and sex matched controls were included in the validation stage. We identified and confirmed six metabolites that were significantly associated with knee OA, of which arginine was the most significant metabolite (P < 3.5 × 10(-13)) with knee OA patients having on average 69 µM lower than that in controls. ROC analysis showed that arginine had the greatest diagnostic value with area under the curve (AUC) of 0.984. The optimal cutoff of arginine concentration was 57 µM with 98.3% sensitivity and 89% specificity. The depletion of arginine in OA patients was most likely due to the over activity of arginine to ornithine pathway, leading to imbalance between cartilage repair and degradation. CONCLUSION: Arginine is significantly depleted in refractory knee OA patients. Further studies within a longitudinal setting are required to examine whether arginine can predict early OA changes.


Subject(s)
Arginine/blood , Osteoarthritis, Knee/blood , Aged , Arginine/deficiency , Arthroplasty, Replacement, Knee , Biomarkers/blood , Body Mass Index , Case-Control Studies , Female , Humans , Male , Metabolomics/methods , Middle Aged , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/surgery , ROC Curve , Sensitivity and Specificity
3.
Biophys J ; 81(5): 2693-706, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11606282

ABSTRACT

X-ray diffraction is used to solve the low-resolution structures of fully hydrated aqueous dispersions of seven different diacyl phosphatidylethanolamines (PEs) whose hydrocarbon chains have the same effective chain length but whose structures vary widely. Both the lower-temperature, liquid-crystalline lamellar (L(alpha)) and the higher-temperature, inverted hexagonal (H(II)) phase structures are solved, and the resultant internal dimensions (d-spacing, water layer thickness, average lipid length, and headgroup area at the lipid-water interface) of each phase are determined as a function of temperature. The magnitude of the L(alpha) and H(II) phase d-spacings on either side of the L(alpha)/H(II) phase transition temperature (T(h)) depends significantly on the structure of the PE hydrocarbon chains. The L(alpha) phase d-spacings range from 51.2 to 56.4 A, whereas those of the H(II) phase range from 74.9 to 82.7 A. These new results differ from our earlier measurements of these PEs (Lewis et al., Biochemistry, 28:541-548, 1989), which found near constant d-spacings of 52.5 and 77.0-78.0 A for the L(alpha) and H(II) phases, respectively. In both phases, the d-spacings decrease with increasing temperature independent of chain structure, but, in both phases, the rate of decrease in the L(alpha) phase is smaller than that in the H(II) phase. A detailed molecular description of the L(alpha)/H(II) phase transition in these PEs is also presented.


Subject(s)
Membrane Lipids/chemistry , Phosphatidylethanolamines/chemistry , X-Ray Diffraction/methods , Chemistry, Physical/methods , Crystallization , Hydrocarbons/chemistry , Molecular Structure , Temperature , Water/chemistry
4.
Chem Phys Lipids ; 111(2): 139-61, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11457442

ABSTRACT

We have synthesized a homologous series of saturated 1,2-di-O-n-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols with odd- and even-numbered hydrocarbon chains ranging in length from 10 to 20 carbon atoms, and have investigated their physical properties using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The DSC results show a complex pattern of phase behaviour, which in a typical preheated sample consists of a lower temperature, moderately energetic lamellar gel/lamellar liquid-crystalline (L(beta)/L(alpha)) phase transition and a higher temperature, weakly energetic lamellar/nonlamellar phase transition. On annealing at a suitable temperature below the L(beta)/L(alpha) phase transition, the L(beta) phase converts to a lamellar crystalline (L(c1)) phase which may undergo a highly energetic L(c1)/L(alpha) or L(c1)/inverted hexagonal (H(II)) phase transition at very high temperatures on subsequent heating or convert to a second L(c2) phase in certain long chain compounds on storage at or below 4 degrees C. The transition temperatures and phase assignments for these galactolipids are supported by our XRD and FTIR spectroscopic measurements. The phase transition temperatures of all of these events are higher than those of the comparable phase transitions exhibited by the corresponding diacyl alpha- and beta-D-glucosyl glycerols. In contrast, the L(beta)/L(alpha) and lamellar/nonlamellar phase transition temperatures of the beta-D-galactosyl glycerols are lower than those of the corresponding diacyl phosphatidylethanolamines (PEs) and these glycolipids form inverted cubic phases at temperatures between the lamellar and H(II) phase regions. Our FTIR measurements indicate that in the L(beta) phase, the hydrocarbon chains form a hexagonally packed structure in which the headgroup and interfacial region are undergoing rapid motion, whereas the L(c) phase consists of a more highly ordered, hydrogen-bonded phase, in which the chains are packed in an orthorhombic subcell similar to that reported for the diacyl-beta-D-glucosyl-sn-glycerols. A comparison of the DSC data presented here with our earlier studies of other diacyl glycolipids shows that the rate of conversion from the L(beta) to the L(c) phase in the beta-D-galactosyl glycerols is slightly faster than that seen in the alpha-D-glucosyl glycerols and much faster than that seen in the corresponding beta-D-glucosyl glycerols. The similarities between the FTIR spectra and the first-order spacings for the lamellar phases in both the beta-D-glucosyl and galactosyl glycerols suggest that the headgroup orientations may be similar in both beta-anomers in all of their lamellar phases. Thus, the differences in their L(beta)/L(c) conversion kinetics and the lamellar/nonlamellar phase properties of these lipids probably arise from subtly different hydration and H-bonding interactions in the headgroup and interfacial regions of these phases. In the latter case, such differences would be expected to alter the ability of the polar headgroup to counterbalance the volume of the hydrocarbon chains. This perspective is discussed in the context of the mechanism for the L(alpha)/H(II) phase transition which we recently proposed, based on our X-ray diffraction measurements of a series of PEs.


Subject(s)
Diglycerides/chemistry , Calorimetry , Chemical Phenomena , Chemistry, Physical , Diglycerides/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Thermodynamics , X-Ray Diffraction
5.
Eur Biophys J ; 30(7): 537-54, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11820397

ABSTRACT

The lamellar gel to lamellar liquid-crystalline (Lbeta/Lalpha) and lamellar liquid-crystalline to inverted hexagonal (Lalpha/H(II)) phase transitions of a number of phosphatidylethanolamines (PEs) and diacyl-alpha-D-glucosyl-sn-glycerols (alpha-D-GlcDAGs) containing linear saturated, linear unsaturated, branched or alicyclic hydrocarbon chains of various lengths were examined by differential scanning calorimetry and low-angle X-ray diffraction. As reported previously, for each homologous series of PEs or alpha-D-GlcDAGs, the Lbeta/Lalpha phase transition temperatures (Tm) increase and the Lalpha/H(II) phase transition temperatures (Th) decrease with increases in hydrocarbon chain length. The Tm and the especially the Th values for the PEs are higher than those of the corresponding alpha-D-GlcDAGs. For PEs having the same effective hydrocarbon chain length but different chain configurations, the Tm and Th values vary markedly but with an almost constant temperature interval (deltaT(L/NL)) between the two phase transitions. Moreover, although the Tm and Th values of the PEs and alpha-D-GlcDAGs are equally sensitive on the temperature scale to variations in the length and chemical configuration of the hydrocarbon chains, the deltaT(L/NL) values are generally larger in the PEs and vary less with the hydrocarbon chain structure. This suggests that the PE headgroup has a greater ability to counteract variations in the packing properties of different hydrocarbon chain structures than does the alpha-D-GlcDAG headgroup. With decreasing chain length, this ability of the PE headgroup to counteract the hydrocarbon chain packing properties increases, significantly expanding the temperature interval over which the Lalpha phase is stable relative to the corresponding regions in the alpha-D-GlcDAGs. Overall, these findings indicate that the PEs have a smaller propensity to form the H(II) phase than do the alpha-D-GlcDAGs with an identical fatty acid composition. In contrast to our previous report, there is some variation in the d-spacings of these various PEs (and alpha-D-GlcDAGs) in both the Lalpha and H(II) phases when the hydrocarbon chain structure is changed while the effective chain length is kept constant. These hydrocarbon chain structural modifications produce different d-spacings in the Lalpha and H(II) phases, but those changes are consistent between the PEs and alpha-D-GlcDAGs, probably reflecting differences in the hydrocarbon chain packing constraints in these two phases. Overall, our experimental observations can be rationalized to a first approximation by a simple lateral stress model in which the primary bilayer strain results from a mismatch between the actual and optimal headgroup areas and the primary strain in the H(II) phase arises from a simple hydrocarbon chain packing term.


Subject(s)
Fatty Acids/chemistry , Glycerol/analogs & derivatives , Glycerol/chemistry , Glycolipids/chemistry , Glycosides/chemistry , Phosphatidylethanolamines/chemistry , Acholeplasma/metabolism , Biophysical Phenomena , Biophysics , Calorimetry, Differential Scanning , Gels , Hydrocarbons/chemistry , Models, Chemical , Temperature , X-Ray Diffraction
6.
Biophys J ; 66(4): 1088-103, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8038381

ABSTRACT

We have synthesized a number of 1,2-diacyl phosphatidylcholines with hydrophobic substituents adjacent to the carbonyl group of the fatty acyl chain and studied their thermotropic phase behavior by differential scanning calorimetry, 31P-nuclear magnetic resonance spectroscopy, and x-ray diffraction. Our results indicate that the hydrocarbon chain-melting phase transition temperatures of these lipids are lower than those of the n-saturated diacylphosphatidylcholines of similar chain length. In the gel phase, the 2-alkyl substituents on the fatty acyl chains seem to inhibit the formation of tightly packed, partially dehydrated, quasi-crystalline bilayers (Lc phases), although possibly promoting the formation of chain-interdigitated bilayers. In the liquid-crystalline state, however, these 2-alkyl substituents destabilize the lamellar phase with respect to one or more inverted nonlamellar structures. In general, increases in the length, bulk, or rigidity of the alkyl substituent result in an increased destabilization of the lamellar gel and liquid-crystalline phases and a greater tendency to form inverted nonlamellar phases, the nature of which depends upon the size of the 2-alkyl substituent. Unlike normal non-lamella-forming lipids such as the phosphatidylethanolamines, increases in the length of the main acyl chain stabilize the lamellar phases and reduce the tendency to form nonlamellar structures. Our results establish that with a judicious choice of a 2-alkyl substituent and hydrocarbon chain length, phosphatidylcholines (and probably most other so-called "bilayer-preferring" lipids) can be induced to form a range of inverted nonlamellar structures at relatively low temperatures. The ability to vary the lamellar/nonlamellar phase preference of such lipids should be useful in studies of bilayer/nonbilayer phase transitions and of the molecular organization of various nonlamellar phases. Moreover, because the nonlamellar phases can easily be induced at physiologically relevant temperatures and hydration levels while avoiding changes in polar headgroup composition, this new class of 2-alkyl-substituted phosphatidylcholines should prove valuable in studies of the physiological role of non-lamella-forming lipids in reconstituted lipid-protein model membranes.


Subject(s)
Phosphatidylcholines/chemistry , Biophysical Phenomena , Biophysics , Calorimetry, Differential Scanning , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Membrane Fluidity , Membranes, Artificial , Models, Chemical , Molecular Structure , Phosphatidylcholines/chemical synthesis , Phosphatidylcholines/classification , Thermodynamics , X-Ray Diffraction
7.
Biophys J ; 66(3 Pt 1): 734-40, 1994 Mar.
Article in English | MEDLINE | ID: mdl-8011905

ABSTRACT

We have investigated the thermotropic phase behavior of aqueous dispersions of the 1,2- and 2,3-di-O-tetradecyl-1(3)-O-(beta-D-galactopyranosyl)-sn- glycerols and their diastereomeric mixture using differential scanning calorimetry and low-angle and wide-angle x-ray diffraction. Upon heating, unannealed aqueous dispersions of these compounds all exhibit a lower temperature, moderately energetic phase transition at approximately 52 degrees C and a higher temperature, weakly energetic phase transition at approximately 63 degrees C, both of which are reversible on cooling. X-ray diffraction measurements identify these events as the L beta (or L' beta)/L alpha and L alpha/HII phase transitions, respectively. The structures of the L beta, L alpha, and HII phases of these lipids, as determined by x-ray diffraction measurements, are identical within the error bars for all of these lipids. On annealing below the L beta/L alpha phase transition temperature, the L beta phase converts to an Lc phase at a rate which is strongly dependent on the chirality of the glycerol backbone (1,2-sn > 1,2-rac > 2,3-sn). The temperature of the phase transition from the Lc phase seen on reheating is also dependent on the glycerol chirality. In addition, the nature of the Lc phase changes on subsequent heating in the 1,2-sn and 1,2-rac lipids, but we have not been able to detect this Lc1/Lc2 phase transition by calorimetry. However, wide-angle x-ray diffraction measurements indicate that these Lc phases differ mostly in their hydrocarbon chain packing modes. The Lc2 phase does not appear to be present in the 2,3-sn compound, suggesting that its formation is not favored in this diastereomeric isomer. These observations are discussed in relation to the effect of glycerol chirality on the molecular packing of these glycolipids, particularly on hydrogen bonding and hydration in the interfacial region of the bilayer.


Subject(s)
Diglycerides/chemistry , Galactolipids , Glycolipids/chemistry , Biophysical Phenomena , Biophysics , Calorimetry, Differential Scanning , Carbohydrate Sequence , Crystallography, X-Ray , Hydrogen Bonding , Membrane Lipids/chemistry , Molecular Sequence Data , Molecular Structure , Oligosaccharides/chemistry , Stereoisomerism , Thermodynamics , Water/chemistry
8.
Arch Pathol Lab Med ; 104(7): 368-70, 1980 Jul.
Article in English | MEDLINE | ID: mdl-6893124

ABSTRACT

Potter's syndrome develops secondary to a deficiency of amniotic fluid, such as occurs in renal agenesis. Congenital cystic adenomatoid malformation (CCAM), on the other hand, is frequently accompanied by polyhydramnios. We describe a newborn with both renal agenesis and CCAM who had only mild features of Potter's syndrome. The pathogenesis of polyhydramnios in CCAM is discussed with regard to the ultrastructural findings of numerous type 2 pneumocytes lining the cysts. The association between CCAM and bilateral renal anomalies is emphasized.


Subject(s)
Abnormalities, Multiple , Kidney/abnormalities , Lung/abnormalities , Adult , Face/abnormalities , Humans , Infant, Newborn , Lung/pathology , Male , Syndrome , Ureter/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL
...