Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(12): 2650-2654, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28460818

ABSTRACT

Factor VIIa (FVIIa) inhibitors have shown strong antithrombotic efficacy in preclinical thrombosis models with limited bleeding liabilities. Discovery of potent, orally active FVIIa inhibitors has been largely unsuccessful due to the requirement of a basic P1 group to interact with Asp189 in the S1 binding pocket, limiting their membrane permeability. We have combined recently reported neutral P1 binding substituents with a highly optimized macrocyclic chemotype to produce FVIIa inhibitors with low nanomolar potency and enhanced permeability.


Subject(s)
Factor VIIa/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Serine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 55(7): 3036-48, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22409629

ABSTRACT

Previously disclosed dihydropyrazolopyrimidines are potent and selective blockers of I(Kur) current. A potential liability with this chemotype is the formation of a reactive metabolite which demonstrated covalent binding to protein in vitro. When substituted at the 2 or 3 position, this template yielded potent I(Kur) inhibitors, with selectivity over hERG which did not form reactive metabolites. Subsequent optimization for potency and PK properties lead to the discovery of ((S)-5-(methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4,7-dihydropyrazolo[1,5-a]pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl)pyrrolidin-1-yl)methanone (13j), with an acceptable PK profile in preclinical species and potent efficacy in the preclinical rabbit atrial effective refractory period (AERP) model.


Subject(s)
Kv1.5 Potassium Channel/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Dogs , Heart/drug effects , Heart/physiology , Humans , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rabbits , Rats , Refractory Period, Electrophysiological/drug effects , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...