Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 78(6): 065109, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17614640

ABSTRACT

A microfabricated silicon mass spectrometer inlet leak has been designed, fabricated, and tested. This leak achieves a much lower conductance in a smaller volume than is possible with commonly available metal or glass capillary tubing. It will also be shown that it is possible to integrate significant additional functionality, such as inlet heaters and valves, into a silicon microleak with very little additional mass. The fabricated leak is compatible with high temperature (up to 500 degrees C) and high pressure (up to 100 bars) conditions, as would be encountered on a Venus atmospheric probe. These leaks behave in reasonable agreement with their theoretically calculated conductance, although this differs between devices and from the predicted value by as much as a factor of 2. This variation is believed to be the result of nonuniformity in the silicon etching process which is characterized in this work. Future versions of this device can compensate for characterized process variations in order to produce devices in closer agreement with designed conductance values. The integration of an inlet heater into the leak device has also been demonstrated in this work.


Subject(s)
Environmental Monitoring/instrumentation , Flow Injection Analysis/instrumentation , Gases/analysis , Mass Spectrometry/instrumentation , Planets , Silicon/chemistry , Space Flight/instrumentation , Environmental Monitoring/methods , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Mass Spectrometry/methods , Miniaturization , Porosity , Reproducibility of Results , Sensitivity and Specificity , Space Flight/methods
2.
Nature ; 438(7069): 779-84, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16319830

ABSTRACT

Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.


Subject(s)
Atmosphere/chemistry , Extraterrestrial Environment/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Space Flight , Argon/analysis , Carbon/analysis , Carbon/chemistry , Isotopes/analysis , Methane/analysis , Methane/chemistry , Nitrogen/analysis , Nitrogen/chemistry , Space Flight/instrumentation
3.
Adv Space Res ; 21(11): 1455-61, 1998.
Article in English | MEDLINE | ID: mdl-11541457

ABSTRACT

The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.


Subject(s)
Atmosphere/chemistry , Extraterrestrial Environment , Gases/analysis , Jupiter , Space Flight/instrumentation , Atmosphere/analysis , Atmospheric Pressure , Helium/analysis , Hydrocarbons/analysis , Hydrogen/analysis , Mass Spectrometry , Noble Gases/analysis , Spacecraft/instrumentation
4.
J Geophys Res ; 103(E10): 22831-45, 1998 Sep 25.
Article in English | MEDLINE | ID: mdl-11543372

ABSTRACT

The Galileo probe mass spectrometer determined the composition of the Jovian atmosphere for species with masses between 2 and 150 amu from 0.5 to 21.1 bars. This paper presents the results of analysis of some of the constituents detected: H2, He, Ne, Ar, Kr, Xe, CH4, NH3, H2O, H2S, C2 and C3 nonmethane hydrocarbons, and possibly PH3 and Cl. 4He/H2 in the Jovian atmosphere was measured to be 0.157 +/- 0.030. 13C/C12 was found to be 0.0108 +/- 0.0005, and D/H and 3He/4He were measured. Ne was depleted, < or = 0.13 times solar, Ar < or = 1.7 solar, Kr < or = 5 solar, and Xe < or = 5 solar. CH4 has a constant mixing ratio of (2.1 +/- 0.4) x 10(-3) (12C, 2.9 solar), where the mixing ratio is relative to H2. Upper limits to the H2O mixing ratio rose from 8 x 10(-7) at pressures <3.8 bars to (5.6 +/- 2.5) x 10(-5) (16O, 0.033 +/- 0.015 solar) at 11.7 bars and, provisionally, about an order of magnitude larger at 18.7 bars. The mixing ratio of H2S was <10(-6) at pressures less than 3.8 bars but rose from about 0.7 x 10(-5) at 8.7 bars to about 7.7 x 10(-5) (32S, 2.5 solar) above 15 bars. Only very large upper limits to the NH3 mixing ratio have been set at present. If PH3 and Cl were present, their mixing ratios also increased with pressure. Species were detected at mass peaks appropriate for C2 and C3 hydrocarbons. It is not yet clear which of these were atmospheric constituents and which were instrumentally generated. These measurements imply (1) fractionation of 4He, (2) a local, altitude-dependent depletion of condensables, probably because the probe entered the descending arm of a circulation cell, (3) that icy planetesimals made significant contributions to the volatile inventory, and (4) a moderate decrease in D/H but no detectable change in (D + 3He)/H in this part of the galaxy during the past 4.6 Gyr.


Subject(s)
Atmosphere/chemistry , Jupiter , Space Flight/instrumentation , Calibration , Carbon/analysis , Extraterrestrial Environment , Gases/analysis , Helium/analysis , Hydrocarbons/analysis , Hydrogen/analysis , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Noble Gases/analysis , Spacecraft/instrumentation
5.
Science ; 272(5263): 846-9, 1996 May 10.
Article in English | MEDLINE | ID: mdl-8629016

ABSTRACT

The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.


Subject(s)
Atmosphere , Extraterrestrial Environment , Jupiter , Water/analysis , Ammonia/analysis , Carbon/analysis , Helium/analysis , Hydrogen/analysis , Mass Spectrometry , Nitrogen/analysis , Noble Gases/analysis , Oxygen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...