Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37788867

ABSTRACT

Genetically modified (GM) mosquitoes are an important tool in the fight against mosquito-borne disease, both indirectly through their use in research investigating host-pathogen interaction, mosquito olfaction, and anthropomorphic behavior and in future direct uses for suppression and possibly eradication through sterile insect technique (SIT) and/or gene-drive programs. Successful creation of GM mosquitoes depends on microinjection procedures that precisely deliver injection materials while causing as little damage to mosquito embryos as possible. Genetic modification reagents, such as transposon system components (vector plasmids, helper plasmids, and helper mRNA), and CRISPR-Cas9 components (guide RNAs, Cas9 protein, plasmids expressing Cas9 and/or guide RNAs, and donor plasmids used in homology-directed repair [HDR]), must be delivered into the preblastoderm embryo at the posterior end where the pole cells will form before cellularization occurs. Sharp needles that pierce the embryo easily are important tools in this procedure and work best when the embryos are not desiccated. The two main procedures for mosquito embryo microinjection involve injecting embryos under halocarbon oil or under aqueous solution.

2.
Article in English | MEDLINE | ID: mdl-37788868

ABSTRACT

The process of genetically modifying mosquitoes requires skilled delivery of reagents for modification. Plasmids, RNA, DNA, and/or protein must be transported into the developing embryo during an appropriate time in development when these agents will have access to the genome. Embryo microinjection has been the main method by which such modifying agents have been delivered. Ideally the microinjection process will deliver these modifying agents in sufficient quantity to effect the genetic modification without severely damaging or killing the injected embryo in the process. As semiaquatic insects, mosquitoes have embryos that are susceptible to desiccation and the degree to which embryos are susceptible is based on species. Two microinjection methods are outlined here. The first method describes embryo microinjections performed under Halocarbon-27 oil. The oil is used to reduce desiccation during the injection process. A second method limits desiccation by injecting the mosquito embryos in water. In both procedures, the embryos are first aligned and then injected before the embryos cellularize, ∼1 h and 45 min after oviposition.

3.
J Vis Exp ; (187)2022 09 13.
Article in English | MEDLINE | ID: mdl-36190290

ABSTRACT

Ticks can transmit various viral, bacterial, and protozoan pathogens and are therefore considered vectors of medical and veterinary importance. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind insect disease vectors due to challenges in applying genetic transformation tools for functional studies to the unique biology of ticks. Genetic interventions have been gaining attention to reduce mosquito-borne diseases. However, the development of such interventions requires stable germline transformation by injecting embryos. Such an embryo injection technique is lacking for chelicerates, including ticks. Several factors, such as an external thick wax layer on tick embryos, hard chorion, and high intra-oval pressure, are some obstacles that previously prevented embryo injection protocol development in ticks. The present work has overcome these obstacles, and an embryo injection technique for the black-legged tick, Ixodes scapularis, is described here. This technique can be used to deliver components, such as CRISPR/Cas9, for stable germline transformations.


Subject(s)
Ixodes , Animals , Gene Editing , Ixodes/genetics
4.
iScience ; 25(3): 103781, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35535206

ABSTRACT

Despite their capacity to acquire and pass on an array of debilitating pathogens, research on ticks has lagged behind other arthropod vectors, such as mosquitoes, largely because of challenges in applying available genetic and molecular tools. CRISPR-Cas9 is transforming non-model organism research; however, successful gene editing has not yet been reported in ticks. Technical challenges for injecting tick embryos to attempt gene editing have further slowed research progress. Currently, no embryo injection protocol exists for any chelicerate species, including ticks. Herein, we report a successful embryo injection protocol for the black-legged tick, Ixodes scapularis, and the use of this protocol for genome editing with CRISPR-Cas9. We also demonstrate that the ReMOT Control technique could be successfully used to generate genome mutations outside Insecta. Our results provide innovative tools to the tick research community that are essential for advancing our understanding of the molecular mechanisms governing pathogen transmission by tick vectors and the underlying biology of host-vector-pathogen interactions.

5.
PLoS Pathog ; 17(11): e1009770, 2021 11.
Article in English | MEDLINE | ID: mdl-34784388

ABSTRACT

PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.


Subject(s)
Anopheles/physiology , CRISPR-Cas Systems , Insect Proteins/metabolism , Malaria/parasitology , Mosquito Vectors/growth & development , Plasmodium/growth & development , Reproduction , Animals , Bacteria/growth & development , Digestive System/microbiology , Female , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Male , Mosquito Vectors/genetics , Mosquito Vectors/parasitology
6.
Malar J ; 20(1): 284, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174879

ABSTRACT

BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.


Subject(s)
Anopheles/parasitology , Insect Proteins/genetics , Plasmodium falciparum/physiology , RNA Interference , Animals , Anopheles/genetics , Female , Gene Knockdown Techniques , Insect Proteins/metabolism , Salivary Glands/parasitology , Sporozoites/physiology
7.
J Vis Exp ; (165)2020 11 17.
Article in English | MEDLINE | ID: mdl-33283789

ABSTRACT

Sand flies are the natural vectors for Leishmania species, protozoan parasites producing a broad spectrum of symptoms ranging from cutaneous lesions to visceral pathology. Deciphering the nature of the vector/parasite interactions is of primary importance for better understanding of Leishmania transmission to their hosts. Among the parameters controlling the sand fly vector competence (i.e. their ability to carry and transmit pathogens), parameters intrinsic to these insects were shown to play a key role. Insect immune response, for example, impacts sand fly vector competence to Leishmania. The study of such parameters has been limited by the lack of methods of gene expression modification adapted for use in these non-model organisms. Gene downregulation by small interfering RNA (siRNA) is possible, but in addition to being technically challenging, the silencing leads to only a partial loss of function, which cannot be transmitted from generation to generation. Targeted mutagenesis by CRISPR/Cas9 technology was recently adapted to the Phlebotomus papatasi sand fly. This technique leads to the generation of transmissible mutations in a specifically chosen locus, allowing to study the genes of interest. The CRISPR/Cas9 system relies on the induction of targeted double-strand DNA breaks, later repaired by either Non-Homologous End Joining (NHEJ) or by Homology Driven Repair (HDR). NHEJ consists of a simple closure of the break and frequently leads to small insertion/deletion events. In contrast, HDR uses the presence of a donor DNA molecule sharing homology with the target DNA as a template for repair. Here, we present a sand fly embryo microinjection method for targeted mutagenesis by CRISPR/Cas9 using NHEJ, which is the only genome modification technique adapted to sand fly vectors to date.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Embryo, Nonmammalian/metabolism , Microinjections , Mutagenesis/genetics , Phlebotomus/embryology , Animals , Female , Male , Mice , Microtechnology , Mutation/genetics , Needles , Phlebotomus/genetics , Phlebotomus/immunology , Phlebotomus/parasitology
8.
G3 (Bethesda) ; 2(11): 1305-15, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23173082

ABSTRACT

Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts.


Subject(s)
Anopheles/genetics , DNA Transposable Elements , Enhancer Elements, Genetic , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Base Sequence , Drosophila/genetics , Gene Expression Regulation , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/metabolism , Transposases/genetics , Transposases/metabolism
9.
Proc Natl Acad Sci U S A ; 108(39): 16339-44, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21930941

ABSTRACT

Technical advances in mosquito biology are enabling the development of new approaches to vector control. Absent are powerful forward-genetics technologies, such as enhancer and gene traps, that permit determination of gene functions from the phenotypes arising from transposon insertion mutations. We show that the piggyBac transposon is highly active in the germline of the human malaria vector Anopheles stephensi. Up to 6% of the progeny from transgenic A. stephensi containing a single 6-kb piggyBac element with a marker gene expressing EGFP had the vector in new genomic locations when piggyBac transposase was provided in trans from a second integrated transgene. The active transposition of piggyBac resulted in the efficient detection of enhancers, with ~10% of the progeny with piggyBac in new locations with novel patterns of EGFP expression in third and fourth instar larvae and in adults. The availability of advanced transgenic capabilities such as efficient transposon-based forward-genetics technologies for Anopheles mosquitoes not only will accelerate our understanding of mosquito functional genomics and the development of novel vector and disease transmission control strategies, but also will enable studies by evolutionary developmental biologists, virologists, and parasitologists.


Subject(s)
Anopheles/genetics , DNA Transposable Elements , Enhancer Elements, Genetic , Animals , Animals, Genetically Modified , Insect Vectors , Malaria/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...