Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 145(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37470476

ABSTRACT

This paper reports a nonbraided, bioresorbable polycaprolactone (PCL) flow diverter (FD) for the endovascular treatment of aneurysms. Bioresorbable FDs can reduce the risk associated with the permanent metallic FDs as they are resorbed by the body after curing of aneurysms. PCL FDs were designed and fabricated using an in-house hybrid electromelt spinning-fused deposition fabrication unit. Flow diverter's properties, surface qualities, and mechanical characteristics of PCL FDs of 50%, 60%, and 70% porosities were studied using scanning electron microscope (SEM), atomic force microscopy (AFM), and high precision universal testing machine (UTM). The deployability through a clinically relevant catheter was demonstrated in a PDMS aneurysm model. The angiographic visibility of the developed PCL FDs was evaluated using BaSO4 and Bi2O3 coatings of various concentration. The average strut thicknesses were 74.12 ± 6.63 µm, 63.07 ± 1.26 µm, and 56.82 ± 2.09 µm for PCL FDs with 50%, 60%, and 70% porosities, respectively. They average pore areas for the 50%, 60% and 70% porosities FDs were 0.055 ± 0.0056 mm2, 0. 0605 ± 0.0065 mm2, and 0.0712 ± 0.012 mm2, respectively. The surface quality was great with an RMS roughness value of 14.45 nm. The tensile, radial strength, and flexibility were found to be satisfactory and comparable to the nonbraided coronary stents. The developed PCL FDs were highly flexible and demonstrated to be deployable through conventional delivery system as low as 4 Fr catheters in a PDMS aneurysm model. The visibility under X-ray increases with the increasing concentration of coating materials BaSO4 and Bi2O3. The visibility intensity was slightly higher with Bi2O3 coating of PCL FDs. The overall results of the engineering analysis of the developed nonbraided PCL FDs are promising.


Subject(s)
Endovascular Procedures , Intracranial Aneurysm , Humans , Absorbable Implants , Stents , Endovascular Procedures/methods
2.
Bioengineering (Basel) ; 8(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34821749

ABSTRACT

The flow diverting stent (FDS) has become a promising endovascular device for the treatment of aneurysms. This research presents a novel biodegradable and non-braided Polycaprolactone (PCL) FDS. The PCL FDS was designed and developed using an in-house fabrication unit and coated on two ends with BaSO4 for angiographic visibility. The mechanical flexibility and quality of FDS surfaces were examined with the UniVert testing machine, scanning electron microscope (SEM), and 3D profilometer. Human umbilical vein endothelial cell (HUVEC) adhesion, proliferation, and cell morphology studies on PCL FDS were performed. The cytotoxicity and NO production by HUVECs with PCL FDS were also conducted. The longitudinal tensile, radial, and bending flexibility were found to be 1.20 ± 0.19 N/mm, 0.56 ± 0.11 N/mm, and 0.34 ± 0.03 N/mm, respectively. The FDS was returned to the original shape and diameter after repeated compression and bending without compromising mechanical integrity. Results also showed that the proliferation and adhesion of HUVECs on the FDS surface increased over time compared to control without FDS. Lactate dehydrogenase (LDH) release and NO production showed that PCL FDS were non-toxic and satisfactory. Cell morphology studies showed that HUVECs were elongated to cover the FD surface and developed an endothelial monolayer. This study is a step forward toward the development and clinical use of biodegradable flow diverting stents for endovascular treatment of the aneurysm.

SELECTION OF CITATIONS
SEARCH DETAIL
...