Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717294

ABSTRACT

Several technologies can be used for measuring strains of soft materials under high rate impact conditions. These technologies include high speed tensile test, split Hopkinson pressure bar test, digital image correlation and high speed X-ray imaging. However, none of these existing technologies can produce a continuous 3D spatial strain distribution in the test specimen. Here we report a novel passive strain sensor based on poly(dimethyl siloxane) (PDMS) elastomer with covalently incorporated spiropyran (SP) mechanophore to measure impact induced strains. We have shown that the incorporation of SP into PDMS at 0.25 wt% level can adequately measure impact strains via color change under a high strain rate of 1500 s-1 within a fraction of a millisecond. Further, the color change is fully reversible and thus can be used repeatedly. This technology has a high potential to be used for quantifying brain strain for traumatic brain injury applications.


Subject(s)
Benzopyrans/chemistry , Dimethylpolysiloxanes/chemistry , Imaging, Three-Dimensional/methods , Indoles/chemistry , Models, Chemical , Nitro Compounds/chemistry , Brain Injuries, Traumatic/diagnostic imaging , Color , Elasticity , Humans , Imaging, Three-Dimensional/instrumentation , Materials Testing , Pressure , Stress, Mechanical , Tensile Strength , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...