Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
MAbs ; 13(1): 1862451, 2021.
Article in English | MEDLINE | ID: mdl-33491549

ABSTRACT

Bispecific antibodies are an important and growing segment in antibody therapeutics, particularly in the immuno-oncology space. Manufacturing of a bispecific antibody with two different heavy chains is greatly simplified if the light chains can be the same for both arms of the antibody. Here, we introduce a strain of common light chain chickens, called OmniClic®, that produces antibody repertoires largely devoid of light chain diversity. The antibody repertoire in these chickens is composed of diverse human heavy chain variable regions capable of high-affinity antigen-specific binding and broad epitope diversity when paired with the germline human kappa light chain. OmniClic birds can be used in immunization campaigns for discovery of human heavy chains to different targets. Subsequent pairing of the heavy chain with a germline human kappa light chain serves to facilitate bispecific antibody production by increasing the efficiency of correct pairing. Abbreviations: AID: activation-induced cytidine deaminase; bsAb: bispecific antibody; CDR: complementarity-determining region; CL: light chain constant region; CmLC: common light chain; D: diversity region; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment crystallizable; FcRn: neonatal Fc receptor; FR: framework region; GEM: gel-encapsulated microenvironment; Ig: immunoglobulin; IMGT: the international ImMunoGeneTics information system®; J: joining region; KO: knockout; mAb: monoclonal antibody; NGS: next-generation sequencing; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PGC: primordial germ cell; PGRN: progranulin; TCR: T cell receptor; V: variable region; VK: kappa light chain variable region; VL: light chain variable region; VH: heavy chain variable region.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Chickens/immunology , Epitopes/immunology , Immunoglobulin Light Chains/immunology , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Flow Cytometry/methods , Humans , Immunization/methods , Immunoglobulin Heavy Chains/immunology , Immunoglobulin kappa-Chains/immunology , Protein Engineering/methods
2.
PLoS One ; 15(1): e0228164, 2020.
Article in English | MEDLINE | ID: mdl-31995598

ABSTRACT

Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.


Subject(s)
Animals, Genetically Modified/genetics , Chickens/genetics , Immunoglobulin lambda-Chains/genetics , Animals , Animals, Genetically Modified/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , Chickens/immunology , Humans , Immunity, Humoral , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin lambda-Chains/immunology , Progranulins/immunology , T-Lymphocytes/immunology , Transgenes/genetics
3.
Front Immunol ; 9: 1317, 2018.
Article in English | MEDLINE | ID: mdl-29951062

ABSTRACT

An important characteristic of chickens is that the antibody repertoire is based on a single framework, with diversity found mainly in the CDRs of the light and heavy chain variable regions. Despite this apparent limitation in the antibody repertoire, high-affinity antibodies can be raised to a wide variety of targets, including those that are highly conserved. Transgenic chickens have previously been generated that express a humanized antibody repertoire, with a single framework that incorporates diversity by the process of gene conversion, as in wild-type chickens. Here, we compare the sequences and antibodies that are generated purely by gene conversion/somatic hypermutation of a pre-rearranged heavy chain, with the diversity obtained by V(D)J rearrangement followed by gene conversion and somatic hypermutation. In a gene converting species, CDR-H3 lengths are more variable with V(D)J rearrangement, but similar levels of amino acid diversity are obtainable with gene conversion/somatic hypermutation alone.

4.
MAbs ; 10(1): 71-80, 2018 01.
Article in English | MEDLINE | ID: mdl-29035625

ABSTRACT

Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.


Subject(s)
Antibodies, Monoclonal, Humanized/biosynthesis , Antibodies, Monoclonal, Humanized/immunology , Antibody Affinity , Antibody Specificity , Antigens/immunology , Chickens/immunology , Epitopes/immunology , Immunoglobulins/immunology , Animals , Animals, Genetically Modified , Antigens/administration & dosage , B-Lymphocytes/immunology , Chickens/blood , Chickens/genetics , Epitope Mapping , Humans , Immunization , Immunoglobulins/blood , Immunoglobulins/genetics , Species Specificity , T-Lymphocytes/immunology
5.
PLoS One ; 8(11): e80108, 2013.
Article in English | MEDLINE | ID: mdl-24278246

ABSTRACT

Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.


Subject(s)
Antibodies/genetics , B-Lymphocytes/metabolism , Chickens/genetics , Gene Conversion , Amino Acid Sequence , Animals , Animals, Genetically Modified , Antibodies/chemistry , Base Sequence , Blotting, Western , Cell Line , DNA Primers , Flow Cytometry , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid
6.
Proc Natl Acad Sci U S A ; 110(50): 20170-5, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24282302

ABSTRACT

Gene targeting by homologous recombination or by sequence-specific nucleases allows the precise modification of genomes and genes to elucidate their functions. Although gene targeting has been used extensively to modify the genomes of mammals, fish, and amphibians, a targeting technology has not been available for the avian genome. Many of the principles of humoral immunity were discovered in chickens, yet the lack of gene targeting technologies in birds has limited biomedical research using this species. Here we describe targeting the joining (J) gene segment of the chicken Ig heavy chain gene by homologous recombination in primordial germ cells to establish fully transgenic chickens carrying the knockout. In homozygous knockouts, Ig heavy chain production is eliminated, and no antibody response is elicited on immunization. Migration of B-lineage precursors into the bursa of Fabricius is unaffected, whereas development into mature B cells and migration from the bursa are blocked in the mutants. Other cell types in the immune system appear normal. Chickens lacking the peripheral B-cell population will provide a unique experimental model to study avian immune responses to infectious disease. More generally, gene targeting in avian primordial germ cells will foster advances in diverse fields of biomedical research such as virology, stem cells, and developmental biology, and provide unique approaches in biotechnology, particularly in the field of antibody discovery.


Subject(s)
B-Lymphocytes/cytology , Chickens/genetics , Gene Knockout Techniques/methods , Genetic Engineering/methods , Germ Cells/chemistry , Immunoglobulin Heavy Chains/genetics , Animals , B-Lymphocytes/metabolism , Blotting, Southern , Chickens/immunology , DNA Methylation , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Genotype , Germ Cells/metabolism , Immunohistochemistry
7.
PLoS One ; 7(5): e35664, 2012.
Article in English | MEDLINE | ID: mdl-22629301

ABSTRACT

In birds, the primordial germ cell (PGC) lineage separates from the soma within 24 h following fertilization. Here we show that the endogenous population of about 200 PGCs from a single chicken embryo can be expanded one million fold in culture. When cultured PGCs are injected into a xenogeneic embryo at an equivalent stage of development, they colonize the testis. At sexual maturity, these donor PGCs undergo spermatogenesis in the xenogeneic host and become functional sperm. Insemination of semen from the xenogeneic host into females from the donor species produces normal offspring from the donor species. In our model system, the donor species is chicken (Gallus domesticus) and the recipient species is guinea fowl (Numida meleagris), a member of a different avian family, suggesting that the mechanisms controlling proliferation of the germline are highly conserved within birds. From a pragmatic perspective, these data are the basis of a novel strategy to produce endangered species of birds using domesticated hosts that are both tractable and fecund.


Subject(s)
Chimera/genetics , Galliformes/genetics , Germ Cells/cytology , Animals , Cell Line , Cells, Cultured , Female , Male
8.
J Immunol ; 183(10): 6338-45, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19841167

ABSTRACT

Native human Abs represent attractive drug candidates; however, the low frequency of B cells expressing high-quality Abs has posed a barrier to discovery. Using a novel single-cell phenotyping technology, we have overcome this barrier to discover human Abs targeting the conserved but poorly immunogenic central motif of respiratory syncytial virus (RSV) G protein. For the entire cohort of 24 subjects with recent RSV infection, B cells producing Abs meeting these stringent specificity criteria were rare, <10 per million. Several of the newly cloned Abs bind to the RSV G protein central conserved motif with very high affinity (K(d) 1-24 pM). Two of the Abs were characterized in detail and compared with palivizumab, a humanized mAb against the RSV F protein. Relative to palivizumab, the anti-G Abs showed improved viral neutralization potency in vitro and enhanced reduction of infectious virus in a prophylaxis mouse model. Furthermore, in a mouse model for postinfection treatment, both anti-G Abs were significantly more effective than palivizumab at reducing viral load. The combination of activity in mouse models for both prophylaxis and treatment makes these high-affinity human-derived Abs promising candidates for human clinical testing.


Subject(s)
Antibodies, Viral/therapeutic use , B-Lymphocytes/immunology , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Viral/immunology , Antibody Affinity/immunology , Antigens, Viral/immunology , Antigens, Viral/metabolism , B-Lymphocytes/virology , Cell Line , Humans , Mice , Neutralization Tests , Palivizumab , Recombinant Proteins/immunology , Respiratory Syncytial Virus Infections/prevention & control , Transfection , Viral Load/drug effects , Viral Load/immunology
9.
J Immunol Methods ; 341(1-2): 127-34, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19084532

ABSTRACT

Micron scale latex beads are well established as highly biocompatible reagents. Imbibing two fluorescent dyes into the interior of the beads enables the creation of a family of combinatorially colored labels. Previous use of such beads, in flow cytometry for example, has focused on beads of approximately 5 microm diameter. We show here that 280 nm combinatorially labeled particles can be used to create ELISA-style assays in 200 microm scale virtual wells, using digital microscopy as the readout. The utility of this technique is illustrated by profiling the secreted cytokine footprints of peripheral blood mononuclear cells in a multiparametric version of the popular Elispot assay. Doing so reveals noncanonical classes of T lymphocytes. We further show that the secreting cell type can be concurrently identified by surface staining with a cell type specific antibody conjugated to the same multiplexed beads.


Subject(s)
Antibodies/chemistry , Flow Cytometry/methods , Immunoassay/methods , Microspheres , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Antibodies/immunology , Cytokines/analysis , Cytokines/immunology , Humans
10.
J Immunol Methods ; 341(1-2): 135-45, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19087879

ABSTRACT

The secreted immunoglobulin footprint of single hybridoma cells, containing ~10 fg of antibody purified in situ, has been probed for 9 properties concurrently by use of detection labels comprising 280 nm combinatorially colored fluorescent latex beads functionalized with proteins. Specificity of each individual hybridoma cell's product has thereby been assessed in a primary screen. Varying the density of antigen on beads to modulate the avidity of the interaction between bead and secreted antibody footprint allowed rank ordering by affinity in the same primary screen. As more criteria were added to the selection process, the frequency of positive cells went down; in some cases, the favorable cell was present at <1/50,000. Recovery of the cell of interest was accomplished by plating the cells in a viscous medium on top of a membrane. After collecting the antibody footprint on a capture surface beneath the membrane, the immobilized cells were transferred to an incubator while the footprints were analyzed to locate the hybridoma cells of interest. The desired cells were then cloned by picking them from the corresponding locations on the membrane.


Subject(s)
Antibody Affinity/immunology , Antibody Specificity/immunology , Hybridomas/cytology , Hybridomas/immunology , Immunoassay/methods , Immunoglobulins/immunology , Animals , Hybridomas/metabolism , Immunoglobulins/metabolism , Mice , Mice, Inbred BALB C , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...