Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610997

ABSTRACT

Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical SWI/SNF chromatin remodeling complex, plays a role in MM cell survival, and targeting BRD9 selectively blocks MM cell proliferation and synergizes with IMiDs. We found that synergy in vitro is associated with the downregulation of MYC and Ikaros proteins, including IKZF3, and overexpression of IKZF3 or MYC could partially reverse synergy. RNA-seq analysis revealed synergy to be associated with the suppression of pathways associated with MYC and E2F target genes and pathways, including cell cycle, cell division, and DNA replication. Stimulated pathways included cell adhesion and immune and inflammatory response. Importantly, combining IMiD treatment and BRD9 targeting, which leads to the downregulation of MYC protein and upregulation of CRBN protein, was able to override IMiD resistance of cells exposed to iberdomide in long-term culture. Taken together, our results support the notion that combination therapy based on agents targeting BRD9 and IKZF3, two established dependencies in MM, represents a promising novel therapeutic strategy for MM and IMiD-resistant disease.

2.
Blood Cancer J ; 12(7): 110, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853853

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM. RNA-seq analysis of acute leukemia and MM cells revealed both unique and common signaling pathways affected by BRD9 degradation, with common pathways including those associated with regulation of inflammation, cell adhesion, DNA repair and cell cycle progression. Degradation of BRD9 potentiated the effects of several chemotherapeutic agents and targeted therapies against AML, ALL, and MM. Our findings support further development of therapeutic targeting of BRD9, alone or combined with other agents, as a novel strategy for acute leukemias and MM.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Multiple Myeloma , Transcription Factors , Antineoplastic Agents/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , RNA Interference , Transcription Factors/genetics , Transcription Factors/metabolism
3.
ACS Chem Biol ; 16(11): 2185-2192, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34515462

ABSTRACT

Bromodomain-containing proteins frequently reside in multisubunit chromatin complexes with tissue or cell state-specific compositions. Recent studies have revealed tumor-specific dependencies on the BAF complex bromodomain subunit BRD9 that are a result of recurrent mutations afflicting the structure and composition of associated complex members. To enable the study of ligand engaged complex assemblies, we established a chemoproteomics approach using a functionalized derivative of the BRD9 ligand BI-9564 as an affinity matrix. Unexpectedly, in addition to known interactions with BRD9 and associated BAF complex proteins, we identify a previously unreported interaction with members of the NuA4 complex through the bromodomain-containing subunit BRD8. We apply this finding, alongside a homology-model-guided design, to develop chemical biology approaches for the study of BRD8 inhibition and to arrive at first-in-class selective and cellularly active probes for BRD8. These tools will empower further pharmacological studies of BRD9 and BRD8 within respective BAF and NuA4 complexes.


Subject(s)
Benzylamines/pharmacology , Naphthyridines/pharmacology , Proteomics/methods , Transcription Factors/metabolism , Cell Line, Tumor , Cell Lineage , DNA Repair , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcriptome
4.
J Biol Chem ; 294(10): 3359-3366, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30647128

ABSTRACT

Bile acids are critical metabolites in the gastrointestinal tract and contribute to maintaining intestinal immune homeostasis through cross-talk with the gut microbiota. The conversion of bile acids by the gut microbiome is now recognized as a factor affecting both host metabolism and immune responses, but its physiological roles remain unclear. We conducted a screen for microbiome metabolites that would function as inflammasome activators and herein report the identification of 12-oxo-lithocholic acid (BAA485), a potential microbiome-derived bile acid metabolite. We demonstrate that the more potent analogue 11-oxo-12S-hydroxylithocholic acid methyl ester (BAA473) can induce secretion of interleukin-18 (IL-18) through activation of the inflammasome in both myeloid and intestinal epithelial cells. Using a genome-wide CRISPR screen with compound induced pyroptosis in THP-1 cells, we identified that inflammasome activation by BAA473 is pyrin-dependent (MEFV). To our knowledge, the bile acid analogues BAA485 and BAA473 are the first small molecule activators of the pyrin inflammasome. We surmise that pyrin inflammasome activation through microbiota-modified bile acid metabolites such as BAA473 and BAA485 plays a role in gut microbiota regulated intestinal immune response. The discovery of these two bioactive compounds may help to further unveil the importance of pyrin in gut homeostasis and autoimmune diseases.


Subject(s)
Bile Acids and Salts/immunology , Epithelial Cells/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Inflammasomes/immunology , Intestinal Mucosa/immunology , Pyrin/immunology , Bile Acids and Salts/chemistry , Humans , Myeloid Cells/immunology , THP-1 Cells
5.
ACS Chem Biol ; 14(1): 20-26, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30461263

ABSTRACT

Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.


Subject(s)
Biological Products/metabolism , Biological Products/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Amino Acid Sequence , Binding Sites , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , HCT116 Cells , HEK293 Cells , Humans , Molecular Structure , Neurospora crassa/metabolism , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/chemistry
6.
Sci Rep ; 7: 42728, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205648

ABSTRACT

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Subject(s)
CRISPR-Cas Systems , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Cells, Cultured , Enzyme Inhibitors/chemistry , Gene Deletion , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Pharmacogenomic Testing/methods
7.
ACS Med Chem Lett ; 7(1): 72-6, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26819669

ABSTRACT

Autophagy is a dynamic process that regulates lysosomal-dependent degradation of cellular components. Until recently the study of autophagy has been hampered by the lack of reliable pharmacological tools, but selective inhibitors are now available to modulate the PI 3-kinase VPS34, which is required for autophagy. Here we describe the discovery of potent and selective VPS34 inhibitors, their pharmacokinetic (PK) properties, and ability to inhibit autophagy in cellular and mouse models.

8.
ACS Chem Biol ; 11(1): 121-31, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26505072

ABSTRACT

Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Enzyme Activation/drug effects , Fusion Proteins, bcr-abl/metabolism , Humans , Inhibitory Concentration 50 , K562 Cells , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Models, Molecular , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proteomics
9.
Proteome Sci ; 15: 17, 2016.
Article in English | MEDLINE | ID: mdl-28725163

ABSTRACT

BACKGROUND: Identifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1. METHODS: Various SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix. RESULTS: The profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity. CONCLUSION: Through comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.

10.
J Med Chem ; 58(18): 7195-216, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26230873

ABSTRACT

While several therapeutic options exist, the need for more effective, safe, and convenient treatment for a variety of autoimmune diseases persists. Targeting the Janus tyrosine kinases (JAKs), which play essential roles in cell signaling responses and can contribute to aberrant immune function associated with disease, has emerged as a novel and attractive approach for the development of new autoimmune disease therapies. We screened our compound library against JAK3, a key signaling kinase in immune cells, and identified multiple scaffolds showing good inhibitory activity for this kinase. A particular scaffold of interest, the 1H-pyrrolo[2,3-b]pyridine series (7-azaindoles), was selected for further optimization in part on the basis of binding affinity (Ki) as well as on the basis of cellular potency. Optimization of this chemical series led to the identification of VX-509 (decernotinib), a novel, potent, and selective JAK3 inhibitor, which demonstrates good efficacy in vivo in the rat host versus graft model (HvG). On the basis of these findings, it appears that VX-509 offers potential for the treatment of a variety of autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Heterocyclic Compounds, 2-Ring/chemistry , Janus Kinase 3/antagonists & inhibitors , Valine/analogs & derivatives , Animals , Cell Line , Databases, Chemical , Dogs , Female , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Haplorhini , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Janus Kinase 2/chemistry , Janus Kinase 3/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Valine/chemistry , Valine/pharmacokinetics , Valine/pharmacology
11.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25327288

ABSTRACT

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Subject(s)
Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Ferritins/metabolism , Homeostasis/physiology , Iron/metabolism , Nuclear Receptor Coactivators/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Humans , Lysosomes/metabolism , Mice , Phagosomes/metabolism , Protein Binding
12.
Anal Biochem ; 423(1): 171-7, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22342622

ABSTRACT

A homogeneous time-resolved fluorescence (HTRF)-based binding assay has been established to measure the binding of the histone methyltransferase (HMT) G9a to its inhibitor CJP702 (a biotin analog of the known peptide-pocket inhibitor, BIX-01294). This assay was used to characterize G9a inhibitors. As expected, the peptide-pocket inhibitors decreased the G9a-CJP702 binding signal in a concentration-dependent manner. In contrast, the S-adenosyl-L-methionine (SAM)-pocket compounds, SAM and sinefungin, significantly increased the G9a-CJP702 binding signal, whereas S-adenosyl-L-homocysteine (SAH) showed minimal effect. Enzyme kinetic studies showed that CJP702 is an uncompetitive inhibitor (vs. SAM) that has a strong preference for the E:SAM form of the enzyme. Other data presented suggest that the SAM/sinefungin-induced increase in the HTRF signal is secondary to an increased E:SAM or E:sinefungin concentration. Thus, the G9a-CJP702 binding assay not only can be used to characterize the peptide-pocket inhibitors but also can detect the subtle conformational differences induced by the binding of different SAM-pocket compounds. To our knowledge, this is the first demonstration of using an uncompetitive inhibitor as a probe to monitor the conformational change induced by compound binding with an HTRF assay.


Subject(s)
Chromatography, High Pressure Liquid , Fluorescent Dyes/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , S-Adenosylhomocysteine/metabolism , Tandem Mass Spectrometry , Adenosine/analogs & derivatives , Adenosine/chemistry , Azepines/chemistry , Catalytic Domain , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Humans , Kinetics , Protein Binding , Quinazolines/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors
13.
Methods Mol Biol ; 795: 161-77, 2012.
Article in English | MEDLINE | ID: mdl-21960222

ABSTRACT

Quantitative chemoproteomics has recently emerged as an experimental approach to determine protein interaction profiles of small molecules in a given cell line or tissue. In contrast to standard biochemical and biophysical kinase assays, application of this method to kinase inhibitors determines compound binding to endogenously expressed kinases under conditions approximating the physiological situation with regard to the molecular state of the kinase and presence of required cofactors and regulatory proteins. Using a dose-dependent, competition-based experimental design in combination with quantitative mass spectrometry approaches, such as the use of tandem mass tags (TMT) for isobaric labeling described here, allows to rank-order interactions of inhibitors to kinase by binding affinity.


Subject(s)
Enzyme Assays/methods , Enzyme Inhibitors/chemistry , Phosphotransferases/metabolism , Proteomics/methods , Binding, Competitive , Cell Line, Tumor , Chromatography, Affinity , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , K562 Cells , Mass Spectrometry , Peptides/metabolism , Phosphotransferases/antagonists & inhibitors , Protein Binding/drug effects , Staining and Labeling
14.
Blood ; 117(21): 5683-91, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21487111

ABSTRACT

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Subject(s)
Adenine/analogs & derivatives , Aminoquinolines/pharmacokinetics , Dendritic Cells/metabolism , Fluorescent Dyes , Genes, MHC Class II/physiology , Imidazoles/pharmacokinetics , Toll-Like Receptor 7/agonists , Adenine/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Cells, Cultured , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , Humans , Imiquimod , Macrolides/pharmacology , Proton-Translocating ATPases/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacokinetics , Toll-Like Receptor 7/metabolism
15.
ACS Med Chem Lett ; 2(10): 758-63, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900264

ABSTRACT

The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745). VX-745 displays excellent enzyme activity and selectivity, has a favorable pharmacokinetic profile, and demonstrates good in vivo activity in models of inflammation.

16.
Bioorg Med Chem Lett ; 19(10): 2891-5, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19361991

ABSTRACT

A series of N-benzylated isatin oximes were developed as inhibitors of the mitogen-activated kinase, JNK3. X-ray crystallographic structures aided in the design and synthesis of novel, selective compounds, that inhibit JNK3, but not p38 MAP kinase and provided key insights into understanding the behavior of gatekeeper residue methionine-146 in determining target selectivity for this series.


Subject(s)
Isatin/chemistry , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Oximes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Catalytic Domain , Crystallography, X-Ray , Drug Design , Isatin/chemical synthesis , Mitogen-Activated Protein Kinase 10/metabolism , Oximes/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
17.
J Proteome Res ; 8(5): 2575-85, 2009 May.
Article in English | MEDLINE | ID: mdl-19271732

ABSTRACT

The elucidation of drug targets is important both to optimize desired compound action and to understand drug side-effects. In this study, we created statistical models which link chemical substructures of ligands to protein domains in a probabilistic manner and employ the model to triage the results of affinity chromatography experiments. By annotating targets with their InterPro domains, general rules of ligand-protein domain associations were derived and successfully employed to predict protein targets outside the scope of the training set. This methodology was then tested on a proteomics affinity chromatography data set containing 699 compounds. The domain prediction model correctly detected 31.6% of the experimental targets at a specificity of 46.8%. This is striking since 86% of the predicted targets are not part of them (but share InterPro domains with them), and thus could not have been predicted by conventional target prediction approaches. Target predictions improve drastically when significance (FDR) scores for target pulldowns are employed, emphasizing their importance for eliminating artifacts. Filament proteins (such as actin and tubulin) are detected to be 'frequent hitters' in proteomics experiments and their presence in pulldowns is not supported by the target predictions. On the other hand, membrane-bound receptors such as serotonin and dopamine receptors are noticeably absent in the affinity chromatography sets, although their presence would be expected from the predicted targets of compounds. While this can partly be explained by the experimental setup, we suggest the computational methods employed here as a complementary step of identifying protein targets of small molecules. Affinity chromatography results for gefitinib are discussed in detail and while two out of the three kinases with the highest affinity to gefitinib in biochemical assays are detected by affinity chromatography, also the possible involvement of NSF as a target for modulating cancer progressions via beta-arrestin can be proposed by this method.


Subject(s)
Chromatography, Affinity/methods , Pharmaceutical Preparations/metabolism , Proteins/metabolism , Proteomics/methods , Binding Sites , Drug Delivery Systems/methods , Gefitinib , Humans , Ligands , Models, Biological , Molecular Structure , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinases/metabolism , Proteins/chemistry , Quinazolines/chemistry , Quinazolines/metabolism , Reproducibility of Results
19.
J Org Chem ; 64(1): 242-251, 1999 Jan 08.
Article in English | MEDLINE | ID: mdl-11674109

ABSTRACT

Syntheses of the potent sulfur-containing tetrapeptide mimetic farnesyl transferase inhibitors B956 (22) and B957 (23) are described. The two double bonds in 22 and 23 were constructed by application of iterative NHK and cuprate S(N)2' reactions. Normal syn NHK reaction and substrate-dependent syn and anti-S(N)2' diastereoselectivities accompanied by exclusive E-olefin selectivity were observed for the first NHK iteration (1 --> 4). In the second iteration, unexpected epimerization and a strong preference for syn diastereoselectivity was observed for the NHK reaction (5b --> 7a + 9a) while an unusual Z-olefin was observed for the S(N)2' reaction (7b --> 11). Deprotection conditions were optimized to ensure high purity and yield of the final aminothiol compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...