Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(13): 6784-6801, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32433887

ABSTRACT

Polymorphisms in the region of the calmodulin-dependent kinase isoform D (CaMK1D) gene are associated with increased incidence of diabetes, with the most common polymorphism resulting in increased recognition by transcription factors and increased protein expression. While reducing CaMK1D expression has a potentially beneficial effect on glucose processing in human hepatocytes, there are no known selective inhibitors of CaMK1 kinases that can be used to validate or translate these findings. Here we describe the development of a series of potent, selective, and drug-like CaMK1 inhibitors that are able to provide significant free target cover in mouse models and are therefore useful as in vivo tool compounds. Our results show that a lead compound from this series improves insulin sensitivity and glucose control in the diet-induced obesity mouse model after both acute and chronic administration, providing the first in vivo validation of CaMK1D as a target for diabetes therapeutics.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/antagonists & inhibitors , Diet/adverse effects , Drug Discovery , Insulin Resistance , Obesity/drug therapy , Obesity/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/chemistry , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Obesity/chemically induced , Protein Conformation , Protein Kinase Inhibitors/therapeutic use
2.
J Med Chem ; 60(24): 10118-10134, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29148755

ABSTRACT

A BioFocus DPI SoftFocus library of ∼35 000 compounds was screened against Mycobacterium tuberculosis (Mtb) in order to identify novel hits with antitubercular activity. The hits were evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc1 complex, disruption of cell-wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization. Compounds from this series were active against clinical Mtb strains, while no cross-resistance to conventional antituberculosis drugs was observed. This suggested a novel mechanism of action, which was confirmed by chemoproteomic analysis leading to the identification of BCG_3193 and BCG_3827 as putative targets of the series with unknown function. Initial structure-activity relationship studies have resulted in compounds with moderate to potent antitubercular activity and improved physicochemical properties.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Blood Proteins/metabolism , Drug Stability , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Mycobacterium tuberculosis/isolation & purification , Proteomics/methods , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
Bioorg Med Chem ; 23(22): 7240-50, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26522089

ABSTRACT

Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Drug Design , Half-Life , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Solubility , Structure-Activity Relationship
4.
Curr Pharm Des ; 20(20): 3314-22, 2014.
Article in English | MEDLINE | ID: mdl-23947648

ABSTRACT

Compilation of an appropriate set of compounds is essential for the success of a small molecule screen. When very little is known about the target and when no or few ligands have been identified, the screening file is often made as diverse as possible. When structural information on the target or target family is available or ligands of the target are known, it is more efficient to apply a ligand- or target-focused bias, so as to predominantly screen compounds that can be expected to modulate the target. One way to achieve this is to select subsets of existing collections; another is to specifically design and synthesize libraries focused on a particular target, target family or mechanism of action. Despite the number of success stories, designing such libraries is still challenging and requires specialized knowledge, especially in emerging target areas such as protein-protein interactions (PPI), epigenetics and the ubiquitin proteasome pathway. BioFocus has successfully produced so-called SoftFocus(®) libraries for many years, evolving their targets from kinases to GPCRs and ion channels to difficult targets in the epigenetics and PPI fields. This article outlines several of the principles applied to SoftFocus library design, showcasing successes achieved by BioFocus' clients. In addition, screening results for a comprehensive set of BioFocus' kinase libraries against 20 kinase targets are used to demonstrate the power of the SoftFocus approach in delivering both selective and less-selective compounds and libraries against these targets. Trademarks: BioFocus(®), SoftFocus(®), HDRA™, FieldFocus™, Thematic Analysis™, ThemePair™ and ThemePair Fragment™ are trademarks of Galapagos NV and/or its affiliates.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Small Molecule Libraries/chemical synthesis , Ligands , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
5.
J Med Chem ; 55(15): 6700-15, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22746295

ABSTRACT

A novel class of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) inhibitors was discovered through screening a kinase-focused library. A homology model of MAPKAP-K2 was generated and used to guide the initial SAR studies and to rationalize the observed selectivity over CDK2. An X-ray crystal structure of a compound from the active series bound to crystalline MAPKAP-K2 confirmed the predicted binding mode. This has enabled the discovery of a series of pyrazolo[1,5-a]pyrimidine derivatives showing good in vitro cellular potency as anti-TNF-α agents and in vivo efficacy in a mouse model of endotoxin shock.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Crystallography, X-Ray , HSP27 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Phosphorylation , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Shock, Septic/metabolism , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis
6.
Comb Chem High Throughput Screen ; 14(6): 521-31, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21521154

ABSTRACT

Target-focused compound libraries are collections of compounds which are designed to interact with an individual protein target or, frequently, a family of related targets (such as kinases, voltage-gated ion channels, serine/cysteine proteases). They are used for screening against therapeutic targets in order to find hit compounds that might be further developed into drugs. The design of such libraries generally utilizes structural information about the target or family of interest. In the absence of such structural information, a chemogenomic model that incorporates sequence and mutagenesis data to predict the properties of the binding site can be employed. A third option, usually pursued when no structural data are available, utilizes knowledge of the ligands of the target from which focused libraries can be developed via scaffold hopping. Consequently, the methods used for the design of target-focused libraries vary according to the quantity and quality of structural or ligand data that is available for each target family. This article describes examples of each of these design approaches and illustrates them with case studies, which highlight some of the issues and successes observed when screening target-focused libraries.


Subject(s)
Drug Design , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Humans , Ion Channels/metabolism , Models, Molecular , Protein Binding , Protein Interaction Mapping , Protein Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism
7.
Comb Chem High Throughput Screen ; 11(6): 482-93, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18673276

ABSTRACT

Increasingly, chemical libraries are being produced which are focused on a biological target or group of related targets, rather than simply being constructed in a combinatorial fashion. A screening collection compiled from such libraries will contain multiple analogues of a number of discrete series of compounds. The question arises as to how many analogues are necessary to represent each series in order to ensure that an active series will be identified. Based on a simple probabilistic argument and supported by in-house screening data, guidelines are given for the number of compounds necessary to achieve a "hit", or series of hits, at various levels of certainty. Obtaining more than one hit from the same series is useful since this gives early acquisition of SAR (structure-activity relationship) and confirms a hit is not a singleton. We show that screening collections composed of only small numbers of analogues of each series are sub-optimal for SAR acquisition. Based on these studies, we recommend a minimum series size of about 200 compounds. This gives a high probability of confirmatory SAR (i.e. at least two hits from the same series). More substantial early SAR (at least 5 hits from the same series) can be gained by using series of about 650 compounds each. With this level of information being generated, more accurate assessment of the likely success of the series in hit-to-lead and later stage development becomes possible.


Subject(s)
Drug Evaluation, Preclinical/methods , Pharmaceutical Preparations/chemistry , Combinatorial Chemistry Techniques , Drug Evaluation, Preclinical/economics , Molecular Weight , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Software , Structure-Activity Relationship
8.
Drug Discov Today ; 11(19-20): 880-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16997137

ABSTRACT

In the post-genomic era, if all proteins in a gene family can putatively be identified, how can drug discovery effectively tackle so many novel targets that might lack structural and small-molecule inhibitory data? In response, chemogenomics, a new approach that guides drug discovery based on gene families, has been developed. By integrating all information available within a protein family (sequence, SAR data, protein structure), chemogenomics can efficiently enable cross-SAR exploitation, directed compound selection and early identification of optimum selectivity panel members. This review examines recent developments in chemogenomics technologies and illustrates their predictive capabilities with successful examples from two of the major protein families: protein kinases and G-protein-coupled receptors.


Subject(s)
Drug Design , Genomics , Structure-Activity Relationship , Animals , Humans , Protein Kinases/chemistry , Protein Kinases/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics
9.
Curr Med Chem ; 13(15): 1735-48, 2006.
Article in English | MEDLINE | ID: mdl-16787217

ABSTRACT

The study of protein target families, as opposed to single targets, has become a very powerful tool in chemogenomics-led drug discovery. By integrating comprehensive chemoinformatics and bioinformatics databases with customised analytical tools, a 'Toolkit' approach for the target family is possible, thus allowing predictions of the ligand class, affinity, selectivity and likely off-target issues to be made for the guidance of the medicinal chemist. In this review, we highlight the development and application of the Toolkit approach to the protein kinase superfamily, drawing on examples from lead optimisation studies and the design of focused libraries for lead discovery.


Subject(s)
Drug Design , Genomics , Protein Kinases/metabolism , Amino Acid Sequence , Molecular Sequence Data , Protein Kinases/chemistry , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...