Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33168727

ABSTRACT

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Nitroquinolines/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Aging/drug effects , Aging/pathology , Aging/physiology , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/pharmacology , DNA/biosynthesis , DNA Damage/physiology , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Neoplasm , Drug Synergism , Enzyme Inhibitors/administration & dosage , Humans , Mad2 Proteins/metabolism , Mice , Mutagenesis , Neoplasms/enzymology , Neoplasms/pathology , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
2.
Environ Mol Mutagen ; 61(8): 830-836, 2020 10.
Article in English | MEDLINE | ID: mdl-32573829

ABSTRACT

Stapled α-helical RIR (Rev1-interacting region) peptides of DNA POL κ bind more effectively to the RIR-interface of the C-terminal recruitment domain of the translesion synthesis DNA polymerase Rev1 than unstapled peptide. The tightest-binding stapled peptide translocates into cells and enhances the cytotoxicity of DNA damaging agents while reducing mutagenesis. Drugs with these characteristics could potentially serve as adjuvants to improve chemotherapy and reduce acquired resistance by inhibiting Rev1-dependent mutagenic translesion synthesis.


Subject(s)
DNA Damage , DNA-Directed DNA Polymerase/metabolism , Mutagens/toxicity , Nucleotidyltransferases/metabolism
3.
ChemMedChem ; 14(17): 1610-1617, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31361935

ABSTRACT

Translesion synthesis (TLS) has emerged as a mechanism through which several forms of cancer develop acquired resistance to first-line genotoxic chemotherapies by allowing replication to continue in the presence of damaged DNA. Small molecules that inhibit TLS hold promise as a novel class of anticancer agents that can serve to enhance the efficacy of these front-line therapies. We previously used a structure-based rational design approach to identify the phenazopyridine scaffold as an inhibitor of TLS that functions by disrupting the protein-protein interaction (PPI) between the C-terminal domain of the TLS DNA polymerase Rev1 (Rev1-CT) and the Rev1 interacting regions (RIR) of other TLS DNA polymerases. To continue the identification of small molecules that disrupt the Rev1-CT/RIR PPI, we generated a pharmacophore model based on the phenazopyridine scaffold and used it in a structure-based virtual screen. In vitro analysis of promising hits identified several new chemotypes with the ability to disrupt this key TLS PPI. In addition, several of these compounds were found to enhance the efficacy of cisplatin in cultured cells, highlighting their anti-TLS potential.


Subject(s)
Azo Compounds/pharmacology , DNA-Directed DNA Polymerase/metabolism , Nucleotidyltransferases/metabolism , Protein Binding/drug effects , Pyridines/pharmacology , Animals , DNA-Directed DNA Polymerase/chemistry , Drug Evaluation, Preclinical , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleotidyltransferases/chemistry , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...