Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(21)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661769

ABSTRACT

Previous studies demonstrated that the 52-kDa FK506-binding protein (FKBP52) proline-rich loop is functionally relevant in the regulation of steroid hormone receptor activity. While zebra fish (Danio rerio; Dr) FKBP52 contains all of the analogous domains and residues previously identified as critical for FKBP52 potentiation of receptor activity, it fails to potentiate activity. Thus, we used a cross-species comparative approach to assess the residues that are functionally critical for FKBP52 function. Random selection of gain-of-function DrFKBP52 mutants in Saccharomyces cerevisiae identified two critical residues, alanine 111 (A111) and threonine 157 (T157), for activation of receptor potentiation by DrFKBP52. In silico homology modeling suggests that alanine to valine substitution at position 111 in DrFKBP52 induces an open conformation of the proline-rich loop surface similar to that observed on human FKBP52, which may allow for sufficient surface area and increased hydrophobicity for interactions within the receptor-chaperone complex. A second mutation in the FKBP12-like domain 2 (FK2), threonine 157 to arginine (T157R), also enhanced potentiation, and the DrFKBP52-A111V/T157R double mutant potentiated receptor activity similar to human FKBP52. Collectively, these results confirm the functional importance of the FKBP52 proline-rich loop, suggest that an open conformation on the proline-rich loop surface is a predictor of activity, and highlight the importance of an additional residue within the FK2 domain.


Subject(s)
Tacrolimus Binding Proteins/chemistry , Zebrafish Proteins/chemistry , Animals , Fibroblasts/drug effects , Fibroblasts/enzymology , Gain of Function Mutation , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Knockout , Molecular Dynamics Simulation , Proline-Rich Protein Domains/genetics , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
J Biol Chem ; 289(22): 15297-308, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24753260

ABSTRACT

Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.


Subject(s)
Carrier Proteins/metabolism , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Progesterone/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Carrier Proteins/genetics , Gene Knockdown Techniques , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Two-Hybrid System Techniques
3.
Curr Protein Pept Sci ; 15(3): 205-15, 2014 May.
Article in English | MEDLINE | ID: mdl-24694367

ABSTRACT

Immunophilins comprise a family of intracellular proteins with peptidyl-prolyl-(cis/trans)-isomerase activity. These foldases are abundant, ubiquitous, and able to bind immunosuppressant drugs, from which the term immunophilin derives. Family members are found in abundance in virtually all organisms and subcellular compartments, and their amino acid sequences are conserved phylogenetically. Immunophilins possess the ability to function as molecular chaperones favoring the proper folding and biological regulation of their biological actions. Their ability to interact via their TPR domains with the 90-kDa heat-shock protein, and through this chaperone, with several signalling cascade factors is of particular importance. Among the family members, the highly homologous proteins FKBP51 and FKBP52 were first characterized due to their ability to interact with steroid hormone receptors. Since then, much progress has been made in understanding the mechanisms by which they regulate receptor signaling and the resulting roles they play not only in endocrine processes, but also in cell architecture, neurodifferentiation, and tumor progression. In this article we review the most relevant features of these two immunophilins and their potential as pharmacologic targets.


Subject(s)
Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Humans , Protein Folding , Protein Structure, Tertiary , Receptors, Steroid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...