Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 46: 81-87, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28131552

ABSTRACT

Next-Generation Sequencing combined with bioinformatics is a powerful tool for analyzing the large number of DNA sequences present in the expressed antibody repertoire and these data sets can be used to advance a number of research areas including antibody discovery and engineering. The accurate measurement of the immune repertoire sequence composition, diversity and abundance is important for understanding the repertoire response in infections, vaccinations and cancer immunology and could also be useful for elucidating novel molecular targets. In this study 4 individual domestic cats (Felis catus) were subjected to antibody repertoire sequencing with total number of sequences generated 1079863 for VH for IgG, 1050824 VH for IgM, 569518 for VK and 450195 for VL. Our analysis suggests that a similar VDJ expression patterns exists across all cats. Similar to the canine repertoire, the feline repertoire is dominated by a single subgroup, namely VH3. The antibody paratope of felines showed similar amino acid variation when compared to human, mouse and canine counterparts. All animals show a similarly skewed VH CDR-H3 profile and, when compared to canine, human and mouse, distinct differences are observed. Our study represents the first attempt to characterize sequence diversity in the expressed feline antibody repertoire and this demonstrates the utility of using NGS to elucidate entire antibody repertoires from individual animals. These data provide significant insight into understanding the feline immune system function.


Subject(s)
Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Amino Acid Sequence , Animals , Antibodies/genetics , Cats , Complementarity Determining Regions/genetics , Dogs , Gene Expression Profiling/methods , Humans , Mice , Reverse Transcriptase Polymerase Chain Reaction , VDJ Exons/genetics
2.
Antimicrob Agents Chemother ; 52(8): 2806-12, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18519725

ABSTRACT

QPT-1 was discovered in a compound library by high-throughput screening and triage for substances with whole-cell antibacterial activity. This totally synthetic compound is an unusual barbituric acid derivative whose activity resides in the (-)-enantiomer. QPT-1 had activity against a broad spectrum of pathogenic, antibiotic-resistant bacteria, was nontoxic to eukaryotic cells, and showed oral efficacy in a murine infection model, all before any medicinal chemistry optimization. Biochemical and genetic characterization showed that the QPT-1 targets the beta subunit of bacterial type II topoisomerases via a mechanism of inhibition distinct from the mechanisms of fluoroquinolones and novobiocin. Given these attributes, this compound represents a promising new class of antibacterial agents. The success of this reverse genomics effort demonstrates the utility of exploring strategies that are alternatives to target-based screens in antibacterial drug discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/antagonists & inhibitors , Topoisomerase II Inhibitors , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Bacteria/enzymology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Cell Line , Cell Proliferation/drug effects , Metabolic Clearance Rate , Mice , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...