Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764112

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3, moeA1, rv0049, and rv2179c. These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens.

2.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090629

ABSTRACT

Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3 , moeA1 , rv0049 , and rv2179c . These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens. Importance: Treatment of Mtb infection requires a long course of combination antibiotics, likely due to subpopulations of tolerant bacteria exhibiting decreased susceptibility to antibiotics. Identifying and characterizing the genetic pathways involved in antibiotic tolerance is expected to yield therapeutic targets for the development of novel TB treatment-shortening regimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...