Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(12): 8280-8297, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38467029

ABSTRACT

Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.

2.
Dalton Trans ; 52(44): 16103-16112, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37812079

ABSTRACT

Heterogeneities in the structure of active centers in metal-containing porous materials are unavoidable and complicate the description of chemical events occurring along reaction coordinates at the atomic level. Metal containing zeolites include sites of varied local coordination and secondary confining environments, requiring careful titration protocols to quantify the predominant active sites. Hybrid organometallic-zeolite catalysts are useful well-defined platform materials for spectroscopic, kinetic, and computational studies of heterogeneous catalysis that avoid the complications of conventional metal-containing porous materials. Such materials have been synthesized and studied previously, but catalytic applications were mostly limited to liquid-phase oxidation and electrochemical reactions. The hydrothermal stability, time-on-stream stability, and utility of these materials in gas-phase oxidation reactions are under-studied. The potential applications for single-site heterogeneous catalysts in fundamental research are abundant and motivate future synthetic, spectroscopic, kinetic, and computational studies.

4.
Acta Crystallogr C Struct Chem ; 79(Pt 4): 133-141, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36919971

ABSTRACT

Nitrogen heterocycles are a class of organic compounds with extremely versatile functionality. Imidines, HN[C(NH)R]2, are a rare class of heterocycles related to imides, HN[C(O)R]2, in which the O atoms of the carbonyl groups are replaced by N-H groups. The useful synthesis of the imidine compounds succinimidine and glutarimidine, as well as their partially hydrolyzed imino-imide congeners, was first described in the mid-1950s, though structural characterization is presented for the first time in this article. In the solid state, these structures are different from the proposed imidine form: succinimidine crystallizes as an imino-amine, 2-imino-3,4-dihydro-2H-pyrrol-5-amine, C4H7N2 (1), glutarimidine as 6-imino-3,4,5,6-tetrahydropyridin-2-amine methanol monosolvate, C5H9N3·CH3OH (2), and the corresponding hydrolyzed imino-imide compounds as amino-amides 5-amino-3,4-dihydro-2H-pyrrol-2-one, C4H6N2O (3), and 6-amino-4,5-dihydropyridin-2(3H)-one, C5H8N2O (4). Imidine 1 was also determined as the hydrochloride salt solvate 5-amino-3,4-dihydro-2H-pyrrol-2-iminium chloride-2-imino-3,4-dihydro-2H-pyrrol-5-amine-water (1/1/1), C4H8N3+·Cl-·C4H7N3·H2O (1·HCl). As such, 1 and 2 show alternating short and long C-N bonds across the molecule, revealing distinct imino (C=NH) and amine (C-NH2) groups throughout the C-N backbone. These structures provide definitive evidence for the predominant imino-amine tautomer in the solid state, which serves to enrich the previously proposed imidine-focused structures that have appeared in organic chemistry textbooks since the discovery of this class of compounds in 1883.

5.
J Am Chem Soc ; 140(43): 14244-14266, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30265002

ABSTRACT

Lewis acid sites in zeolites catalyze aqueous-phase sugar isomerization at higher turnover rates when confined within hydrophobic rather than within hydrophilic micropores; however, relative contributions of competitive water adsorption at active sites and preferential stabilization of isomerization transition states have remained unclear. Here, we employ a suite of experimental and theoretical techniques to elucidate the effects of coadsorbed water on glucose isomerization reaction coordinate free energy landscapes. Transmission IR spectra provide evidence that water forms extended hydrogen-bonding networks within hydrophilic but not hydrophobic micropores of Beta zeolites. Aqueous-phase glucose isomerization turnover rates measured on Ti-Beta zeolites transition from first-order to zero-order dependence on glucose thermodynamic activity, as Lewis acidic Ti sites transition from water-covered to glucose-covered, consistent with intermediates identified from modulation excitation spectroscopy during in situ attenuated total reflectance IR experiments. First-order and zero-order isomerization rate constants are systematically higher (by 3-12×, 368-383 K) when Ti sites are confined within hydrophobic micropores. Apparent activation enthalpies and entropies reveal that glucose and water competitive adsorption at Ti sites depend weakly on confining environment polarity, while Gibbs free energies of hydride-shift isomerization transition states are lower when confined within hydrophobic micropores. DFT calculations suggest that interactions between intraporous water and isomerization transition states increase effective transition state sizes through second-shell solvation spheres, reducing primary solvation sphere flexibility. These findings clarify the effects of hydrophobic pockets on the stability of coadsorbed water and isomerization transition states and suggest design strategies that modify micropore polarity to influence turnover rates in liquid water.

6.
Chemistry ; 24(47): 12405-12415, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29710392

ABSTRACT

The overall chloriding effectiveness factor (Z*), defined as the ratio of ethyl chloride concentration in parts per million to the sum of ethylene and ethane concentration in mole percent multiplied by a weighting factor to account for their efficacy in removing chlorine-adatoms from the surface, was used as a parameter to account for the effects of chlorine on the kinetics of ethylene epoxidation on a highly promoted 35 wt % Ag/α-Al2 O3 catalyst. An increase in O2 order (≈0.7 to 1) and a decrease in C2 H4 order (≈0.5 to <0) with increasing Z* (Z*=2.1, 3.4, 5.2, and 8.9) was observed implicating kinetic relevance of O2 activation on chloride-promoted silver catalysts. Carbon dioxide co-feed (1-5 mol %) was found to promote ethylene oxide selectivity as CO2 co-feed reversibly inhibits CO2 synthesis rates (-0.6 order) more than ethylene oxide synthesis rates (-0.49 order) at all Z* values. Ethylene oxide and CO2 rates were found to be invariant with ethylene oxide (0-0.5 mol %) and acetaldehyde (0-1.7 ppm) co-feeds, suggesting that there is minimal product inhibition under reaction conditions. A model involving a common reaction intermediate for ethylene oxide and carbon dioxide synthesis and two types of atomically adsorbed oxygen species-nucleophilic and electrophilic oxygen-is proposed to plausibly describe the observed reaction rate dependencies and selectivity trends as a function of the chloriding effectiveness.

7.
Rev Sci Instrum ; 87(10): 103101, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802763

ABSTRACT

A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10-2-103 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).

8.
Emerg Med Clin North Am ; 26(3): 685-702, viii, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18655940

ABSTRACT

The spectrum of acute coronary syndromes (ACS) includes several clinical complexes that frequently cause critical instability in affected patients. This article focuses on several critical care aspects of these unstable ACS patients. The management of cardiogenic shock can be particularly challenging because the mechanical defects are varied in cause, severity, and specific treatment. Complications of fibrinolytic therapy are potentially deadly and arrhythmias are relatively common in the ACS patients. Discussions on the management of these problems should help the emergency physician more effectively to treat critically ill patients with ACS.


Subject(s)
Coronary Disease , Critical Care/methods , Outcome Assessment, Health Care , Acute Disease , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/therapy , Humans , Prevalence , Syndrome , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...