Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 327: 113201, 2020 05.
Article in English | MEDLINE | ID: mdl-31953040

ABSTRACT

This study of medial gastrocnemius (MG) muscle and motor units (MUs) after spinal cord hemisection and deafferentation (HSDA) in adult cats, asked 1) whether the absence of muscle atrophy and unaltered contractile speed demonstrated previously in HSDA-paralyzed peroneus longus (PerL) muscles, was apparent in the unloaded HSDA-paralyzed MG muscle, and 2) how ankle unloading impacts MG muscle and MUs after dorsal root sparing (HSDA-SP) with foot placement during standing and locomotion. Chronic isometric contractile forces and speeds were maintained for up to 12 months in all conditions, but fatigability increased exponentially. MU recordings at 8-11½ months corroborated the unchanged muscle force and speed with significantly increased fatigability; normal weights of MG muscle confirmed the lack of disuse atrophy. Fast MUs transitioned from fatigue resistant and intermediate to fatigable accompanied by corresponding fiber type conversion to fast oxidative (FOG) and fast glycolytic (FG) accompanied by increased GAPDH enzyme activity in absolute terms and relative to oxidative citrate synthase enzyme activity. Myosin heavy chain composition, however, was unaffected. MG muscle behaved like the PerL muscle after HSDA with maintained muscle and MU contractile force and speed but with a dramatic increase in fatigability, irrespective of whether all the dorsal roots were transected. We conclude that reduced neuromuscular activity accounts for increased fatigability but is not, in of itself, sufficient to promote atrophy and slow to fast conversion. Position and relative movements of hindlimb muscles are likely contributors to sustained MG muscle and MU contractile force and speed after HSDA and HSDA-SP surgeries.


Subject(s)
Muscle Fatigue/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy/physiopathology , Paralysis/physiopathology , Spinal Cord Injuries/physiopathology , Animals , Cats , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Paralysis/pathology , Spinal Cord Injuries/pathology
2.
J Physiol ; 595(5): 1815-1829, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27891608

ABSTRACT

KEY POINTS: Smn+/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. ABSTRACT: Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn+/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn+/- transgenic mouse increases their susceptibility to cell death demonstrated that all the motoneurons survived and they sustained their capacity to regenerate their nerve fibres. It is concluded the systematic die-back of motoneurons that innervate both fast- and slow-twitch muscle fibres is not related to immaturity of the neuromuscular system in SMA.


Subject(s)
Axons/physiology , Muscular Atrophy, Spinal/physiopathology , Animals , Femoral Nerve/physiology , Hindlimb/physiology , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Sciatic Nerve/physiology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...