Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rev ; 103(1): 391-432, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35953269

ABSTRACT

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.


Subject(s)
Edema, Cardiac , Heart Diseases , Lymphatic Vessels , Animals , Disease Models, Animal , Edema, Cardiac/physiopathology , Heart Diseases/physiopathology , Lymphatic Vessels/physiopathology
2.
J Exp Biol ; 225(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35694960

ABSTRACT

Mitochondrial function is fundamental to organismal performance, health and fitness - especially during energetically challenging events, such as migration. With this investigation, we evaluated mitochondrial sensitivity to ecologically relevant stressors. We focused on an iconic migrant, the North American monarch butterfly (Danaus plexippus), and examined the effects of two stressors: 7 days of food deprivation and infection by the protozoan parasite Ophryocystis elektroscirrha (known to reduce survival and flight performance). We measured whole-animal resting metabolic rate (RMR) and peak flight metabolic rate, and mitochondrial respiration of isolated mitochondria from the flight muscles. Food deprivation reduced mass-independent RMR and peak flight metabolic rate, whereas infection did not. Fed monarchs used mainly lipids in flight (respiratory quotient 0.73), but the respiratory quotient dropped in food-deprived individuals, possibly indicating switching to alternative energy sources, such as ketone bodies. Food deprivation decreased mitochondrial maximum oxygen consumption but not basal respiration, resulting in lower respiratory control ratio (RCR). Furthermore, food deprivation decreased mitochondrial complex III activity, but increased complex IV activity. Infection did not result in any changes in these mitochondrial variables. Mitochondrial maximum respiration rate correlated positively with mass-independent RMR and flight metabolic rate, suggesting a link between mitochondria and whole-animal performance. In conclusion, low food availability negatively affects mitochondrial function and flight performance, with potential implications for migration, fitness and population dynamics. Although previous studies have reported poor flight performance in infected monarchs, we found no differences in physiological performance, suggesting that reduced flight capacity may be due to structural differences or low energy stores.


Subject(s)
Apicomplexa , Butterflies , Parasites , Animals , Apicomplexa/physiology , Butterflies/physiology , Host-Parasite Interactions , Mitochondria
3.
Circ Res ; 130(1): 5-23, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34789016

ABSTRACT

BACKGROUND: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS: Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS: Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS: VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Lymphatic Vessels/metabolism , Pericardium/metabolism , Signal Transduction , Animals , Antigens, CD/genetics , Cadherins/genetics , Cells, Cultured , Female , Humans , Lymphatic Vessels/physiology , Male , Mice , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
4.
Annu Rev Med ; 72: 167-182, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33502903

ABSTRACT

The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.


Subject(s)
Lymphangiogenesis/drug effects , Lymphatic Diseases/drug therapy , Lymphatic Vessels/pathology , Pharmaceutical Preparations/administration & dosage , Animals , Drug Administration Routes , Humans , Lymphatic Diseases/diagnosis
5.
Trends Pharmacol Sci ; 41(4): 249-265, 2020 04.
Article in English | MEDLINE | ID: mdl-32115276

ABSTRACT

Receptor activity-modifying proteins (RAMPs) interact with G-protein-coupled receptors (GPCRs) to modify their functions, imparting significant implications upon their physiological and therapeutic potentials. Resurging interest in identifying RAMP-GPCR interactions has recently been fueled by coevolution studies and orthogonal technological screening platforms. These new studies reveal previously unrecognized RAMP-interacting GPCRs, many of which expand beyond Class B GPCRs. The consequences of these interactions on GPCR function and physiology lays the foundation for new molecular therapeutic targets, as evidenced by the recent success of erenumab. Here, we highlight recent papers that uncovered novel RAMP-GPCR interactions, human RAMP-GPCR disease-causing mutations, and RAMP-related human pathologies, paving the way for a new era of RAMP-targeted drug development.


Subject(s)
Receptor Activity-Modifying Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Humans , Molecular Targeted Therapy , Mutation , Receptor Activity-Modifying Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/drug effects
6.
Front Neuroanat ; 11: 44, 2017.
Article in English | MEDLINE | ID: mdl-28588456

ABSTRACT

The vomeronasal system (VNS) is specialized in the detection of salient chemical cues triggering social and neuroendocrine responses. Such responses are not always stereotyped, instead, they vary depending on age, sex, and reproductive state, yet the mechanisms underlying this variability are unclear. Here, by analyzing neuronal survival in the first processing nucleus of the VNS, namely the accessory olfactory bulb (AOB), through multiple bromodeoxyuridine birthdating protocols, we show that exposure of female mice to male soiled bedding material affects the integration of newborn granule interneurons mainly after puberty. This effect is induced by urine compounds produced by mature males, as bedding soiled by younger males was ineffective. The granule cell increase induced by mature male odor exposure is not prevented by pre-pubertal ovariectomy, indicating a lesser role of circulating estrogens in this plasticity. Interestingly, the intake of adult male urine-derived cues by the female vomeronasal organ increases during puberty, suggesting a direct correlation between sensory activity and AOB neuronal plasticity. Thus, as odor exposure increases the responses of newly born cells to the experienced stimuli, the addition of new GABAergic inhibitory cells to the AOB might contribute to the shaping of vomeronasal processing of male cues after puberty. Consistently, only after puberty, female mice are capable to discriminate individual male odors through the VNS.

7.
Neurology ; 82(5): 459-60, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24491972

ABSTRACT

Wilbrand and Saenger(1) studied optic chiasms after unilateral enucleation, noting inferonasal crossing fibers curved anteriorly into the contralateral optic nerve (Wilbrand knee; figure, A). This explains contralateral superotemporal visual field defects (junctional scotomas) with optic nerve lesions at the chiasmal junction. However, Wilbrand knee may be an enucleation artifact.(2) The anisotropic light-reflecting properties of myelinated axons permitted imaging of normal human chiasms. Thin sections (25 µm) were illuminated and digitally imaged from 3 incident angles. Each of the images was pseudocolored (red, green, or blue) and merged, revealing an anomalously oriented fiber tract (appearing white) that reversed direction at the optic nerve-chiasm junction, found in inferior (figure, C) but not in superior sections (figure, B), consistent with Wilbrand and Saenger's original description.


Subject(s)
Artifacts , Fluorescence Polarization , Optic Chiasm/pathology , Optic Nerve/pathology , Fluorescence Polarization/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...