Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38904098

ABSTRACT

The intrarenal endothelin (ET) system is an established moderator of kidney physiology and mechanistic contributor to the pathophysiology and progression of chronic kidney disease in humans and rodents. The aim of the present study was to characterize ET system by combining single cell RNA sequencing (scRNA-seq) data with immunolocalization in human and rodent kidneys of both sexes. Using publicly available scRNA-seq data, we assessed sex and kidney disease status (human), age and sex (rats), and diurnal expression (mice) on the kidney ET system expression. In normal human biopsies of both sexes and in rodent kidney samples, the endothelin-converting enzyme-1 (ECE1) and ET-1 were prominent in the glomeruli and endothelium. These data agreed with the scRNA-seq data from these three species, with ECE1/Ece1 mRNA enriched in the endothelium. However, the EDN1/Edn1 gene (encodes ET-1) was rarely detected, even though it was immunolocalized within the kidneys, and plasma and urinary ET-1 excretion are easily measured. Within each species, there were some sex-specific differences. For example, in kidney biopsies from living donors, men had a greater glomerular endothelial cell endothelin receptor B (Ednrb) compared with women. In mice, females had greater kidney endothelial cell Ednrb than male mice. As commercially available antibodies did not work in all species, and RNA expression did not always correlate with protein levels, multiple approaches should be considered to maintain required rigor and reproducibility of the pre- and clinical studies evaluating the intrarenal ET system.


Subject(s)
Endothelin-1 , Endothelin-Converting Enzymes , Receptor, Endothelin B , Animals , Humans , Male , Endothelin-Converting Enzymes/metabolism , Endothelin-Converting Enzymes/genetics , Female , Endothelin-1/metabolism , Endothelin-1/genetics , Mice , Receptor, Endothelin B/metabolism , Receptor, Endothelin B/genetics , Rats , Kidney/metabolism , Endothelins/metabolism , Endothelins/genetics , Sex Factors , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics , Single-Cell Analysis , RNA-Seq , Kidney Glomerulus/metabolism
2.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400239

ABSTRACT

This paper addresses the challenging issue of achieving high spatial resolution in temperature monitoring of printed circuit boards (PCBs) without compromising the operation of electronic components. Traditional methods involving numerous dedicated sensors such as thermocouples are often intrusive and can impact electronic functionality. To overcome this, this study explores the application of ultrasonic guided waves, specifically utilising a limited number of cost-effective and unobtrusive Piezoelectric Wafer Active Sensors (PWAS). Employing COMSOL multiphysics, wave propagation is simulated through a simplified PCB while systematically varying the temperature of both components and the board itself. Machine learning algorithms are used to identify hotspots at component positions using a minimal number of sensors. An accuracy of 97.6% is achieved with four sensors, decreasing to 88.1% when utilizing a single sensor in a pulse-echo configuration. The proposed methodology not only provides sufficient spatial resolution to identify hotspots but also offers a non-invasive and efficient solution. Such advancements are important for the future electrification of the aerospace and automotive industries in particular, as they contribute to condition-monitoring technologies that are essential for ensuring the reliability and safety of electronic systems.

3.
Cells ; 12(24)2023 12 07.
Article in English | MEDLINE | ID: mdl-38132102

ABSTRACT

Alcohol-induced cardiomyopathy (ACM) has a poor prognosis with up to a 50% chance of death within four years of diagnosis. There are limited studies investigating the potential of abstinence for promoting repair after alcohol-induced cardiac damage, particularly in a controlled preclinical study design. Here, we developed an exposure protocol that led to significant decreases in cardiac function in C57BL6/J mice within 30 days; dP/dt max decreased in the mice fed alcohol for 30 days (8054 ± 664.5 mmHg/s compared to control mice: 11,188 ± 724.2 mmHg/s, p < 0.01), and the dP/dt min decreased, as well (-7711 ± 561 mmHg/s compared to control mice: -10,147 ± 448.2 mmHg/s, p < 0.01). Quantitative PCR was used to investigate inflammatory and fibrotic biomarkers, while histology was used to depict overt changes in cardiac fibrosis. We observed a complete recovery of function after abstinence (dP/dt max increased from 8054 ± 664 mmHg/s at 30 days to 11,967 ± 449 mmHg/s after abstinence, p < 0.01); further, both inflammatory and fibrotic biomarkers decreased after abstinence. These results lay the groundwork for future investigation of the molecular mechanisms underlying recovery from alcohol-induced damage in the heart.


Subject(s)
Cardiomyopathies , Heart , Mice , Animals , Cardiomyopathies/etiology , Blood Pressure , Ethanol/adverse effects , Biomarkers
4.
Antibiotics (Basel) ; 12(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760644

ABSTRACT

Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.

5.
Am J Physiol Heart Circ Physiol ; 324(6): H762-H775, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36930656

ABSTRACT

Plasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM. Male and female C57BL/6J mice were fed either a normal fat diet (NFD) or an HFD for 28 wk to assess changes in blood pressure, cardiometabolic phenotype, plasma prorenin/renin, sPRR, and ANG II. After completing dietary protocols, tissues were collected from males to assess vascular reactivity and aortic reactive oxygen species (ROS). A cohort of male mice was used to determine the direct contribution of increased systemic sPRR by infusion. To investigate the role of ovarian hormones, ovariectomy (OVX) was performed at 32 wk in females fed either an NFD or HFD. Significant sex differences were found after 28 wk of HFD, where only males developed T2DM and increased plasma prorenin/renin, sPRR, and ANG II. T2DM in males was accompanied by nondipping hypertension, carotid artery stiffening, and aortic ROS. sPRR infusion in males induced vascular thickening instead of material stiffening caused by HFD-induced T2DM. While intact females were less prone to T2DM, OVX increased plasma prorenin/renin, sPRR, and systolic blood pressure. These data suggest that sPRR is a novel indicator of systemic RAAS activation and reflects the onset of vascular complications during T2DM regulated by sex.NEW & NOTEWORTHY High-fat diet (HFD) for 28 wk leads to type 2 diabetes mellitus (T2DM) phenotype, concomitant with increased plasma soluble prorenin receptor (sPRR), nondipping blood pressure, and vascular stiffness in male mice. HFD-fed female mice exhibiting a preserved cardiometabolic phenotype until ovariectomy revealed increased plasma sPRR and blood pressure. Plasma sPRR may indicate the status of systemic renin-angiotensin-aldosterone system (RAAS) activation and the onset of vascular complications during T2DM in a sex-dependent manner.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Vacuolar Proton-Translocating ATPases , Female , Male , Mice , Animals , Renin , Prorenin Receptor , Diet, High-Fat/adverse effects , Reactive Oxygen Species , Mice, Inbred C57BL , Renin-Angiotensin System/genetics , Receptors, Cell Surface/genetics , Blood Pressure
6.
Antibiotics (Basel) ; 12(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36978391

ABSTRACT

Background: Since disulfiram's discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were "disulfiram" and "Antabuse". Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948-2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a "repurposed" agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.

7.
Sensors (Basel) ; 21(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34770696

ABSTRACT

The computer modelling of condition monitoring sensors can aide in their development, improve their performance, and allow for the analysis of sensor impact on component operation. This article details the development of a COMSOL model for a guided wave-based temperature monitoring system, with a view to using the technology in the future for the temperature monitoring of nozzle guide vanes, found in the hot section of aeroengines. The model is based on an experimental test system that acts as a method of validation for the model. Piezoelectric wedge transducers were used to excite the S0 Lamb wave mode in an aluminium plate, which was temperature controlled using a hot plate. Time of flight measurements were carried out in MATLAB and used to calculate group velocity. The results were compared to theoretical wave velocities extracted from dispersion curves. The assembly and validation of such a model can aide in the future development of guided wave based sensor systems, and the methods provided can act as a guide for building similar COMSOL models. The results show that the model is in good agreement with the experimental equivalent, which is also in line with theoretical predictions.


Subject(s)
Sound , Transducers , Computer Simulation , Temperature
8.
Opt Express ; 29(12): 19113-19119, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34154152

ABSTRACT

Photonic system component counts are increasing rapidly, particularly in CMOS-compatible silicon photonics processes. Large numbers of cascaded active photonic devices are difficult to implement when accounting for constraints on area, power dissipation, and response time. Plasma dispersion and the thermo-optic effect, both available in CMOS-compatible silicon processes, address a subset of these criteria. With the addition of a few back-end-of-line etch processing steps, silicon photonics platforms can support nano-opto-electro-mechanical (NOEM) phase shifters. Realizing NOEM phase shifters that operate at CMOS-compatible voltages (≤ 1.2 V) and with low insertion loss remains a challenge. Here, we introduce a novel NOEM phase shifter fabricated alongside 90 nanometer transistors that imparts 5.63 radians phase shift at 1.08 volts bias over an actuation length of 25µm with an insertion loss of less than 0.04 dB and 3 dB bandwidth of 0.26 MHz.

10.
Onco Targets Ther ; 14: 1797-1805, 2021.
Article in English | MEDLINE | ID: mdl-33727830

ABSTRACT

Hairy cell leukemia variant (HCL-v) is a rare B-cell lymphoproliferative disorder with distinct immunophenotypic and molecular characteristics when compared to classical hairy cell leukemia (HCL-c). In contrast to the enormous progress in therapeutic options for HCL-c, HCL-v remains a therapeutic challenge due to inferior outcomes with standard chemoimmunotherapy and BCR signaling pathway inhibitors, and due to the fact that HCL-v has limited molecular therapeutic targets. In addition, because of the rarity of the disease, there is a paucity of later phase studies or multicenter trials to guide treatment decisions. In this article, we briefly review the diagnostic criteria and clinical characteristics of HCL-v and present a comprehensive overview of current therapeutic options in HCL-v.

11.
Neuropsychopharmacology ; 45(9): 1473-1481, 2020 08.
Article in English | MEDLINE | ID: mdl-32074627

ABSTRACT

The α2a-adrenergic receptor (α2a-AR) agonist guanfacine has been investigated as a potential treatment for substance use disorders. While decreasing stress-induced reinstatement of cocaine seeking in animal models and stress-induced craving in human studies, guanfacine has not been reported to decrease relapse rates. Although guanfacine engages α2a-AR autoreceptors, it also activates excitatory Gi-coupled heteroreceptors in the bed nucleus of the stria terminalis (BNST), a key brain region in driving stress-induced relapse. Thus, BNST α2a-AR heteroreceptor signaling might decrease the beneficial efficacy of guanfacine. We aimed to determine the role of α2a-AR heteroreceptors and BNST Gi-GPCR signaling in stress-induced reinstatement of cocaine conditioned place preference (CPP) and the effects of low dose guanfacine on BNST activity and stress-induced reinstatement. We used a genetic deletion strategy and the cocaine CPP procedure to first define the contributions of α2a-AR heteroreceptors to stress-induced reinstatement. Next, we mimicked BNST Gi-coupled α2a-AR heteroreceptor signaling using a Gi-coupled designer receptor exclusively activated by designer drug (Gi-DREADD) approach. Finally, we evaluated the effects of low-dose guanfacine on BNST cFOS immunoreactivity and stress-induced reinstatement. We show that α2a-AR heteroreceptor deletion disrupts stress-induced reinstatement and that BNST Gi-DREADD activation is sufficient to induce reinstatement. Importantly, we found that low-dose guanfacine does not increase BNST activity, but prevents stress-induced reinstatement. Our findings demonstrate a role for α2a-AR heteroreceptors and BNST Gi-GPCR signaling in stress-induced reinstatement of cocaine CPP and provide insight into the impact of dose on the efficacy of guanfacine as a treatment for stress-induced relapse of cocaine use.


Subject(s)
Cocaine , Septal Nuclei , Adrenergic Agents , Animals , Cocaine/pharmacology , Guanfacine/pharmacology , Humans , Receptors, Adrenergic, alpha-2/metabolism , Septal Nuclei/metabolism
12.
Adv Sci (Weinh) ; 7(1): 1901904, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31921563

ABSTRACT

Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase-organophosphate complexes, but suffer from short half-lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long-lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one-to-one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long-lived bioscavengers by designing and synthesizing cholinesterase-polymer-oxime conjugates using atom transfer radical polymerization and azide-alkyne "click" chemistry. Detailed kinetic studies show that butyrylcholinesterase-polymer-oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime-containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter- and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.

13.
Pediatr Res ; 87(4): 735-739, 2020 03.
Article in English | MEDLINE | ID: mdl-31618753

ABSTRACT

BACKGROUND: As clinical exome sequencing (CES) becomes more common, understanding which patients are most likely to benefit and in what manner is critical for the general pediatrics community to appreciate. METHODS: Five hundred and twenty-three patients referred to the Pediatric Genetics clinic at Michigan Medicine were systematically phenotyped by the presence or absence of abnormalities for 13 body/organ systems by a Clinical Genetics team. All patients then underwent CES. RESULTS: Overall, 30% of patients who underwent CES had an identified pathogenic mutation. The most common phenotypes were developmental delay (83%), neuromuscular system abnormalities (81%), and multiple congenital anomalies (42%). In all, 67% of patients had a variant of uncertain significance (VUS) or gene of uncertain significance (GUS); 23% had no variants reported. There was a significant difference in the average number of body systems affected among these groups (pathogenic 5.89, VUS 6.0, GUS 6.12, and no variant 4.6; P < 0.00001). Representative cases highlight four ways in which CES is changing clinical pediatric practice. CONCLUSIONS: Patients with identified variants are enriched for multiple organ system involvement. Furthermore, our phenotyping provides broad insights into which patients are most likely to benefit from genetics referral and CES and how those results can help guide clinical practice more generally.


Subject(s)
Congenital Abnormalities/genetics , DNA Mutational Analysis , Exome Sequencing , Genetic Testing , Mutation , Congenital Abnormalities/diagnosis , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Phenotype , Predictive Value of Tests , Retrospective Studies
14.
Neuron ; 105(1): 46-59.e3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31735403

ABSTRACT

Non-selective antagonists of metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) exert rapid antidepressant-like effects by enhancing prefrontal cortex (PFC) glutamate transmission; however, the receptor subtype contributions and underlying mechanisms remain unclear. Here, we leveraged newly developed negative allosteric modulators (NAMs), transgenic mice, and viral-assisted optogenetics to test the hypothesis that selective inhibition of mGlu2 or mGlu3 potentiates PFC excitatory transmission and confers antidepressant efficacy in preclinical models. We found that systemic treatment with an mGlu2 or mGlu3 NAM rapidly activated biophysically unique PFC pyramidal cell ensembles. Mechanistic studies revealed that mGlu2 and mGlu3 NAMs enhance thalamocortical transmission and inhibit long-term depression by mechanistically distinct presynaptic and postsynaptic actions. Consistent with these actions, systemic treatment with either NAM decreased passive coping and reversed anhedonia in two independent chronic stress models, suggesting that both mGlu2 and mGlu3 NAMs induce antidepressant-like effects through related but divergent mechanisms of action.


Subject(s)
Allosteric Regulation/physiology , Cerebral Cortex/physiology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Thalamus/physiology , Adaptation, Psychological/drug effects , Anhedonia/drug effects , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Cerebral Cortex/metabolism , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Knockout , Mice, Transgenic , Neural Pathways/physiology , Neuronal Plasticity/physiology , Optogenetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Pyramidal Cells/physiology , Thalamus/metabolism
15.
mBio ; 10(3)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064836

ABSTRACT

Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research.IMPORTANCEP. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.


Subject(s)
Genetic Fitness , Lysine/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Metabolic Networks and Pathways
16.
Sci Signal ; 12(569)2019 02 19.
Article in English | MEDLINE | ID: mdl-30783011

ABSTRACT

G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gßγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gßγ-mediated mechanism downstream of Ca2+ entry is the binding of Gßγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gßγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Synaptosomal-Associated Protein 25/metabolism , Animals , Calcium , Exocytosis/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Neural Inhibition/physiology , Phenotype , Protein Binding , Synaptic Transmission/physiology , Synaptosomal-Associated Protein 25/genetics
17.
J Neurosci ; 38(42): 8922-8942, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30150361

ABSTRACT

Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α2A-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENT Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.


Subject(s)
Anxiety/physiopathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neurons/physiology , Receptors, Adrenergic, alpha-2/physiology , Septal Nuclei/physiology , Stress, Psychological/physiopathology , Adrenergic alpha-2 Receptor Agonists/administration & dosage , Animals , Catecholamines/metabolism , Female , Guanfacine/administration & dosage , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Septal Nuclei/diagnostic imaging , Septal Nuclei/metabolism
18.
ACS Chem Neurosci ; 9(9): 2173-2187, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29851347

ABSTRACT

The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.


Subject(s)
Cues , Drug-Seeking Behavior/physiology , Neuronal Plasticity , Septal Nuclei/metabolism , Stress, Psychological/metabolism , Alcohol Abstinence , Alcoholism/metabolism , Animals , Dopamine/metabolism , Ethanol , Humans , Long-Term Potentiation , Long-Term Synaptic Depression , Norepinephrine/metabolism , Receptors, Adrenergic/metabolism , Receptors, Dopamine/metabolism , Substance-Related Disorders/metabolism
19.
Angew Chem Int Ed Engl ; 57(31): 9707-9710, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29906336

ABSTRACT

The electron-rich isonitrile is an important functionality in bioactive natural products, but its biosynthesis has been restricted to the IsnA family of isonitrile synthases. We herein provide the first structural and biochemical evidence of an alternative mechanism for isonitrile formation. ScoE, a putative non-heme iron(II)-dependent enzyme from Streptomyces coeruleorubidus, was shown to catalyze the conversion of (R)-3-((carboxymethyl)amino)butanoic acid to (R)-3-isocyanobutanoic acid through an oxidative decarboxylation mechanism. This work further provides a revised scheme for the biosynthesis of a unique class of isonitrile lipopeptides, of which several members are critical for the virulence of pathogenic mycobacteria.


Subject(s)
Carboxy-Lyases/metabolism , Ferrous Compounds/metabolism , Nitriles/metabolism , Oxidoreductases/metabolism , Biocatalysis , Carboxy-Lyases/chemistry , Ferrous Compounds/chemistry , Models, Molecular , Molecular Structure , Nitriles/chemistry , Oxidoreductases/chemistry , Streptomyces/enzymology
20.
Opt Lett ; 43(5): 1171-1174, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489808

ABSTRACT

Bragg waveguides are promising optical filters for pump suppression in spontaneous four-wave mixing (FWM) photon sources. In this work, we investigate the generation of unwanted photon pairs in the filter itself. We do this by taking advantage of the relation between spontaneous and classical FWM, which allows for the precise characterization of the nonlinear response of the device. The pair generation rate estimated from the classical measurement is compared with the theoretical value calculated by means of a full quantum model of the filter, which also allows investigation of the spectral properties of the generated pairs. We find a good agreement between theory and experiment, confirming that stimulated FWM is a valuable approach to characterize the nonlinear response of an integrated filter, and that the pairs generated in a Bragg waveguide are not a serious issue for the operation of a fully integrated nonclassical source.

SELECTION OF CITATIONS
SEARCH DETAIL
...