Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Am Heart J Plus ; 40: 100380, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38586433

ABSTRACT

Introduction: This study aimed to investigate the relationship between risk factors of cancer among individuals with existing cardiovascular disease (CVD). Methods: The analysis included 438 and 2100 CVD patients aged 65+ from NHANES-III and Continuous datasets, respectively. Competing risk models with subdistribution hazards ratio (aHR) were used to identify risk factors. Results: Females in NHANES-III had lower cancer risk (aHR 0.39, P = 0.001) compared to males. Poor physical activity was associated with increased cancer risk in both datasets (aHR 2.59 in NHANES-III, aHR 1.59 in Continuous). In NHANES-Continuous, age (aHR 1.07, P < 0.001) and current smoking (aHR 2.55, P = 0.001) also showed a significant association with developing cancer. No other factors investigated showed significant associations. Discussion: This study highlights the interplay between traditional risk factors and the elevated risk of cancer in CVD patients. Further research with larger samples and wider age ranges is needed to solidify these findings and inform intervention strategies.

2.
J Clin Hypertens (Greenwich) ; 26(3): 235-240, 2024 03.
Article in English | MEDLINE | ID: mdl-38332546

ABSTRACT

Higher nighttime blood pressure (BP), less BP dipping, and higher BP variability have been linked with worse cognitive function in the elderly. The goal of this study is to explore whether this relationship already exists in early and middle adulthood. We further examined whether ethnic differences between African Americans and European Americans in BP parameters can explain ethnic differences in cognitive function. 24-h ambulatory BP monitoring and cognitive function were obtained from 390 participants (average age: 37.2 years with a range of 25-50; 54.9% African Americans; 63.6% females). We observed that higher nighttime BP, decreased dipping, and higher variability were significantly associated with lower scores on the Picture Sequence Memory Test. Significant negative associations between variability and overall composite scores were also observed. No significant associations between average 24-h or daytime BP and cognitive function were observed. Ethnic differences in nighttime diastolic pressures and dipping can explain 6.81% to 10.8% of the ethnicity difference in the score of the Picture Sequence Memory Test (ps < .05). This study suggests that the associations of nighttime BP, dipping, and variability with cognitive function already exist in young and middle-aged adults. Ethnic differences in nighttime BP and dipping can at least partially explain ethnic differences in cognitive function. The stronger association of these parameters with cognitive function than daytime or average BP in this age range raises the importance of using ambulatory BP monitoring for more precise detection of abnormal BP patterns in young adulthood.


Subject(s)
Hypertension , Adult , Female , Humans , Male , Middle Aged , Black or African American , Blood Pressure/physiology , Blood Pressure Monitoring, Ambulatory , Circadian Rhythm/physiology , Cognition , Hypertension/diagnosis , Hypertension/epidemiology , White
3.
Antioxidants (Basel) ; 13(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38397773

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While recent studies have demonstrated that SARS-CoV-2 may enter kidney and colon epithelial cells by inducing receptor-independent macropinocytosis, it remains unknown whether this process also occurs in cell types directly relevant to SARS-CoV-2-associated lung pneumonia, such as alveolar epithelial cells and macrophages. The goal of our study was to investigate the ability of SARS-CoV-2 spike protein subunits to stimulate macropinocytosis in human alveolar epithelial cells and primary human and murine macrophages. Flow cytometry analysis of fluid-phase marker internalization demonstrated that SARS-CoV-2 spike protein subunits S1, the receptor-binding domain (RBD) of S1, and S2 stimulate macropinocytosis in both human and murine macrophages in an angiotensin-converting enzyme 2 (ACE2)-independent manner. Pharmacological and genetic inhibition of macropinocytosis substantially decreased spike-protein-induced fluid-phase marker internalization in macrophages both in vitro and in vivo. High-resolution scanning electron microscopy (SEM) imaging confirmed that spike protein subunits promote the formation of membrane ruffles on the dorsal surface of macrophages. Mechanistic studies demonstrated that SARS-CoV-2 spike protein stimulated macropinocytosis via NADPH oxidase 2 (Nox2)-derived reactive oxygen species (ROS) generation. In addition, inhibition of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) in macrophages blocked SARS-CoV-2 spike-protein-induced macropinocytosis. To our knowledge, these results demonstrate for the first time that SARS-CoV-2 spike protein subunits stimulate macropinocytosis in macrophages. These results may contribute to a better understanding of SARS-CoV-2 infection and COVID-19 pathogenesis.

4.
Viruses ; 16(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38257840

ABSTRACT

The ongoing COVID-19 pandemic has revealed the shortfalls in our understanding of how to treat coronavirus infections. With almost 7 million case fatalities of COVID-19 globally, the catalog of FDA-approved antiviral therapeutics is limited compared to other medications, such as antibiotics. All-trans retinoic acid (RA), or activated vitamin A, has been studied as a potential therapeutic against coronavirus infection because of its antiviral properties. Due to its impact on different signaling pathways, RA's mechanism of action during coronavirus infection has not been thoroughly described. To determine RA's mechanism of action, we examined its effect against a mouse coronavirus, mouse hepatitis virus strain A59 (MHV). We demonstrated that RA significantly decreased viral titers in infected mouse L929 fibroblasts and RAW 264.7 macrophages. The reduced viral titers were associated with a corresponding decrease in MHV nucleocapsid protein expression. Using interferon regulatory factor 3 (IRF3) knockout RAW 264.7 cells, we demonstrated that RA-induced suppression of MHV required IRF3 activity. RNA-seq analysis of wildtype and IRF3 knockout RAW cells showed that RA upregulated calcium/calmodulin (CaM) signaling proteins, such as CaM kinase kinase 1 (CaMKK1). When treated with a CaMKK inhibitor, RA was unable to upregulate IRF activation during MHV infection. In conclusion, our results demonstrate that RA-induced protection against coronavirus infection depends on IRF3 and CaMKK.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Interferon Regulatory Factor-3 , Murine hepatitis virus , Tretinoin , Virus Replication , Animals , Mice , Amino Acids , Antiviral Agents/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Tretinoin/pharmacology , Virus Replication/drug effects , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , RAW 264.7 Cells , L Cells
5.
Front Cardiovasc Med ; 10: 1326686, 2023.
Article in English | MEDLINE | ID: mdl-38155985

ABSTRACT

Background: Approximately 10% of the world is left-handed (LH). Research suggests that LH individuals may have shorter lifespans compared to right-handed (RH) individuals. LH individuals also appear to have more cardiovascular disease (CVD) related conditions like diabetes and cancer. Thus, the present study sought to test the hypothesis that vascular function and heart rate variability (HRV), both key indicators of CVD risk, would be lower in LH compared to RH individuals. Methods: Three hundred seventy-nine participants, 18-50 years old, were enrolled. Flow-mediated dilation (FMD), a bioassay of vascular endothelial function and standard deviation of R-R interval (SDNN), a parameter of HRV, were evaluated as indices of CVD risk. Data are reported as mean ± SD. Results: 12.1% of the participants were LH. No differences in demographics or clinical laboratory values were observed between groups, except high-density lipoprotein (HDL) was higher (p = 0.033) in RH. FMD was significantly (p = 0.043) lower in LH (6.1% ± 3.2%) compared to RH (7.6% ± 3.8%), independent of age, sex, race, BMI, and HDL. Total power (p = 0.024) and low-frequency power (p = 0.003) were lower in LH compared to RH. Additionally, SDNN was lower (p = 0.041) in LH (47.4 ± 18.8 ms) compared to RH (54.7 ± 22.3 ms). A negative correlation between FMD and mean arterial pressure (r = -0.517; p < 0.001) was observed in LH; no relationships were observed in RH (all p > 0.05). Conclusion: Vascular endothelial function and HRV are lower in LH compared to RH. In addition, relationships between FMD and traditional CVD risk factors were only observed in LH. These data support an increased risk of CVD in LH.

6.
Hypertension ; 80(12): 2621-2626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800322

ABSTRACT

BACKGROUND: Circadian rhythm regulates many important biological functions in humans. The goal of this study is to explore the impact of day-to-day deviations in the sleep-wake cycle on nighttime blood pressure (BP) dipping and further examine whether the ethnic difference in day-to-day deviations in sleep patterns can explain the ethnic difference in nighttime BP dipping. METHODS: Twenty-four-hour ambulatory BP monitoring and 7-day accelerometer data were obtained from 365 adult participants (age range, 18.7-50.1 years; 52.6% Black participants and 47.3% European Americans; 64.1% females). Systolic BP dipping level was used to represent nighttime BP dipping. The SD of sleep duration was calculated as the index of sleep variability, and the SD of sleep midpoint was calculated as the index of sleep irregularity. RESULTS: A 1-hour increase in the SD of sleep midpoint was associated with a 1.16% decrease in nighttime BP dipping (P<0.001). A 1-hour increase in the SD of sleep duration was associated with a 1.39% decrease in nighttime BP dipping (P=0.017). The ethnic difference in the SD of sleep midpoint can explain 29.2% of the ethnicity difference in BP dipping (P=0.008). CONCLUSIONS: Sleep variability and sleep irregularity are associated with blunted BP dipping in the general population. In addition, data from the present investigation also demonstrate that the ethnic difference in sleep irregularity could partly explain the ethnic difference in BP dipping, an important finding that may help reduce the health disparity between Black participants and European Americans.


Subject(s)
Hypertension , Sleep , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Blood Pressure/physiology , Blood Pressure Monitoring, Ambulatory , Circadian Rhythm/physiology , Sleep/physiology , Black or African American , White
7.
Cardiovasc Diabetol ; 22(1): 243, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679748

ABSTRACT

BACKGROUND: Endogenous estrogen is cardio-protective in healthy premenopausal women. Despite this favorable action of estrogen, animal models depict a detrimental effect of estradiol on vascular function in the presence of diabetes. The present study sought to determine the role of endogenous estradiol on endothelial function in women with type 1 diabetes. METHOD: 32 women with type 1 diabetes (HbA1c = 8.6 ± 1.7%) and 25 apparently healthy women (HbA1c = 5.2 ± 0.3%) participated. Flow-mediated dilation (FMD), a bioassay of nitric-oxide bioavailability and endothelial function was performed during menses (M) and the late follicular (LF) phase of the menstrual cycle to represent low and high concentrations of estrogen, respectively. In addition, a venous blood sample was collected at each visit to determine circulating concentrations of estradiol, thiobarbituric acid reactive substances (TBARS), and nitrate/nitrite (NOx), biomarkers of oxidative stress and nitric oxide, respectively. Data were collected in (1) 9 additional women with type 1 diabetes using oral hormonal birth control (HBC) (HbA1c = 8.3 ± 2.1%) during the placebo pill week and second active pill week, and (2) a subgroup of 9 demographically matched women with type 1 diabetes not using HBC (HbA1c = 8.9 ± 2.1%). RESULTS: Overall, estradiol was significantly increased during the LF phase compared to M in both type 1 diabetes (Δestradiol = 75 ± 86 pg/mL) and controls (Δestradiol = 71 ± 76 pg/mL); however, an increase in TBARS was only observed in patients with type 1 diabetes (ΔTBARS = 3 ± 13 µM) compared to controls (ΔTBARS = 0 ± 4 µM). FMD was similar (p = 0.406) between groups at M. In addition, FMD increased significantly from M to the LF phase in controls (p = 0.024), whereas a decrease was observed in type 1 diabetes. FMD was greater (p = 0.015) in patients using HBC compared to those not on HBC, independent of menstrual cycle phase. CONCLUSION: Endogenous estradiol increases oxidative stress and contributes to endothelial dysfunction in women with diabetes. Additionally, HBC use appears to be beneficial to endothelial function in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Vascular Diseases , Female , Animals , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Estradiol , Thiobarbituric Acid Reactive Substances , Estrogens
8.
Arterioscler Thromb Vasc Biol ; 43(10): e381-e395, 2023 10.
Article in English | MEDLINE | ID: mdl-37586054

ABSTRACT

BACKGROUND: Obesity is associated with increased risk of cardiovascular disease, but underlying mechanisms remain elusive. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor, but how glucose impacts vascular function is unclear. GAL3 (galectin-3) is a sugar-binding lectin upregulated by hyperglycemia, but its role as a causative mechanism of cardiovascular disease remains poorly understood. Therefore, the objective of this study was to determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. METHODS: GAL3 was measured and found to be markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate causative mechanisms in cardiovascular disease, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout, obese, and obese GAL3 knockout genotypes. Endothelial cell-specific GAL3 knockout mice with novel AAV-induced obesity recapitulated whole-body knockout studies to confirm cell specificity. RESULTS: Deletion of GAL3 did not alter body mass, adiposity, or plasma indices of glycemia and lipidemia, but levels of plasma reactive oxygen species as assessed by plasma thiobarbituric acid reactive substances were normalized in obese GAL3 knockout mice. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells from obese mice had increased expression of NOX1 (nicotinamide adenine dinucleotide phosphate oxidase 1), which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, which was normalized in microvascular endothelium from mice lacking GAL3. Cell-specific deletion confirmed that endothelial GAL3 regulates obesity-induced NOX1 overexpression and subsequent microvascular function. Furthermore, improvement of metabolic syndrome by increasing muscle mass, improving insulin signaling, or treating with metformin decreased microvascular GAL3, and thereby NOX1, expression levels. CONCLUSIONS: Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3, and in turn NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.


Subject(s)
Cardiovascular Diseases , Hyperglycemia , Hypertension , Animals , Humans , Mice , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Hyperglycemia/metabolism , Mice, Knockout , Mice, Obese , NADPH Oxidase 1/metabolism , NADPH Oxidases/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Oxidative Stress
9.
Chron Respir Dis ; 20: 14799731231174542, 2023.
Article in English | MEDLINE | ID: mdl-37166356

ABSTRACT

INTRODUCTION: Glycated hemoglobin can interfere with oxygen delivery and CO2 removal during exercise. Additionally, pancreatic insufficiency increases oxidative stress and exacerbates exercise intolerance in people with cystic fibrosis (PwCF). This investigation sought to test the hypotheses that elevated Hemoglobin A1c (HbA1c) can negatively affect exercise parameters in PwCF and that reductions in oxidative stress can improve tissue oxygenation in individuals with elevated HbA1c. METHODS: Twenty four PwCF were divided into two groups; normal HbA1c <5.7% (N-HbA1c) and elevated HbA1c >5.7% (E-HbA1c). A maximal exercise test was conducted to obtain peak oxygen uptake (VO2peak), VO2 at ventilatory threshold (VT), ventilatory parameters (VE/VCO2 slope and end-tidal CO2 (petCO2)). Near-Infrared Spectroscopy (NIRS) was used to assess muscle oxygenated/deoxygenated hemoglobin during exercise. A subset of individuals with E-HbA1cwere given an antioxidant cocktail (AOC) for 4 weeks to determine the effects on tissue oxygenation during exercise. RESULTS: A negative relationship between HbA1c and VO2peak at VT was observed (r = -0.511; p = 0.018). In addition, a positive relationship between HbA1c and VE/VCO2 slope (r = 0.587;p = 0.005) and a negative relationship between HbA1c and petCO2 at maximal exercise (r = -0.472;p = 0.031) was observed. N-HbA1c had greater VO2peak (p = 0.021), VO2 at VT (p = 0.004), petCO2 (p = 0.002), and lower VE/VCO2 slope (p = 0.004) compared with E-HbA1c. Muscle deoxygenated hemoglobin at VT was higher in N-HbA1c vs. E-HbA1c and 4 weeks of AOC improved skeletal muscle utilization of oxygen. CONCLUSION: Findings demonstrate that glycated hemoglobin may lead to tissue oxygenation impairment and ventilation inefficiency during exercise in PwCF. In addition, antioxidant supplementation may lead to improved tissue oxygenation during exercise.


Subject(s)
Cystic Fibrosis , Exercise , Oxygen Consumption , Humans , Antioxidants , Carbon Dioxide , Cystic Fibrosis/therapy , Exercise Test/methods , Glycated Hemoglobin , Muscles , Oxygen , Oxygen Consumption/physiology
10.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131826

ABSTRACT

Rationale: Obesity increases the risk of cardiovascular disease (CVD) through mechanisms that remain incompletely defined. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor but how glucose impacts vascular function is unclear. Galectin-3 (GAL3) is a sugar binding lectin upregulated by hyperglycemia but its role as a causative mechanism of CVD remains poorly understood. Objective: To determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. Methods and Results: GAL3 was markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate a role for GAL3 in CVD, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout (KO), obese, and obese GAL3 KO genotypes. GAL3 KO did not alter body mass, adiposity, glycemia or lipidemia, but normalized elevated markers of reactive oxygen species (TBARS) in plasma. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells (EC) from obese mice had increased NOX1 expression, which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, and NOX1 levels were normalized in EC from obese mice lacking GAL3. EC-specific GAL3 knockout mice made obese using a novel AAV-approach recapitulated whole-body knockout studies, confirming that endothelial GAL3 drives obesity-induced NOX1 overexpression and endothelial dysfunction. Improved metabolism through increased muscle mass, enhanced insulin signaling, or metformin treatment, decreased microvascular GAL3 and NOX1. GAL3 increased NOX1 promoter activity and this was dependent on GAL3 oligomerization. Conclusions: Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3 and in turn, NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.

11.
J Clin Endocrinol Metab ; 108(10): 2561-2568, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37009678

ABSTRACT

CONTEXT: Type 1 diabetes (T1D) negatively affects both the endothelin system and muscle oxidative capacity. The endothelin pathway is a critical regulator of microcirculatory function and may exhibit sexual dichotomy by which healthy premenopausal women have greater endothelin-B receptor (ETBR) function compared to men. Moreover, T1D may differentially alter muscle oxidative capacity in men and women; however, whether ETBR function is impaired in women compared to men with T1D and its relationship with muscle oxidative capacity has yet to be explored. OBJECTIVE: The purpose of this investigation was to determine if ETBR-mediated dilation is impaired in women compared to men with T1D and if this is related to their skeletal muscle oxidative capacity. METHODS: Men (n = 9; glycated hemoglobin A1c [HbA1c] = 7.8 ± 1.0%) and women (N = 10 women; HbA1c = 8.4 ± 1.3%) with uncomplicated T1D were recruited for this investigation. Near-infrared spectroscopy (NIRS) and intradermal microdialysis (750 nM BQ-123 + ET-1 [10-20-10-8 mol/L]) were used to evaluate skeletal muscle oxidative capacity and assess ETBR-mediated vasodilation, respectively. RESULTS: Skeletal muscle oxidative capacity was significantly lower (P = .031) in women compared with men with T1D. However, ETBR-mediated dilation induced a significantly greater (P = .012) vasodilatory response in women compared to men with T1D, and the area under the curve was negatively associated with skeletal muscle oxidative capacity (r = -.620; P = .042). CONCLUSION: Compared to men with uncomplicated T1D, muscle oxidative capacity was lower and ETBR-mediated vasodilation was higher in women with uncomplicated T1D. ETBR-induced vasodilatory capacity was inversely related to skeletal muscle oxidative capacity, suggesting there may be compensatory mechanisms occurring to preserve microvascular blood flow in women with T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Female , Humans , Male , Diabetes Mellitus, Type 1/metabolism , Endothelin-1 , Endothelins/pharmacology , Glycated Hemoglobin , Microcirculation , Mitochondria/metabolism
12.
JNCI Cancer Spectr ; 7(2)2023 03 01.
Article in English | MEDLINE | ID: mdl-36752520

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death in men with prostate cancer (PC). Accumulated stress plays an important role in CVD development. The cumulative burden of chronic stress and life events can be measured using allostatic load (AL). METHODS: The initial cohort included males aged 18 years and older diagnosed with PC (2005-2019). AL was modeled as an ordinal variable (0-11). Fine-Gray competing risk regressions measured the impact of precancer diagnosis AL and postdiagnosis AL in 2-year major cardiac events (MACE). The effect of AL changes over time on MACE development was calculated via piecewise Cox regression (before, and 2 months, 6 months, and 1 year after PC diagnosis). RESULTS: We included 5261 PC patients of which 6.6% had a 2-year MACE. For every 1-point increase in AL before and within 60 days after PC diagnosis, the risk of MACE increased 25% (adjusted hazard ratio [aHR] =1.25, 95% confidence interval [CI] = 1.18 to 1.33) and 27% (aHR = 1.27, 95% CI = 1.20 to 1.35), respectively. Using AL as a time-varying exposure, the risk of MACE increased 19% (aHR = 1.19, 95% CI = 1.11 to 1.27), 22% (aHR = 1.22, 95% CI = 1.14 to 1.33), 28% (aHR = 1.28, 95% CI = 1.23 to 1.33), and 31% (aHR = 1.31, 95% CI = 1.27 to 1.35) for every 1-point increase in AL before, 2 months after, 6 months after, and 1 year after PC diagnosis, respectively. CONCLUSION: AL and its changes over time are associated with MACE in PC patients, suggesting a role of a biological measure of stress as a marker of CVD risk among men with PC.


Subject(s)
Allostasis , Cardiovascular Diseases , Prostatic Neoplasms , Male , Humans
13.
Chron Respir Dis ; 19: 14799731221121670, 2022.
Article in English | MEDLINE | ID: mdl-36068015

ABSTRACT

BACKGROUND: The roles of physical activity (PA) and exercise within the management of cystic fibrosis (CF) are recognised by their inclusion in numerous standards of care and treatment guidelines. However, information is brief, and both PA and exercise as multi-faceted behaviours require extensive stakeholder input when developing and promoting such guidelines. METHOD: On 30th June and 1st July 2021, 39 stakeholders from 11 countries, including researchers, healthcare professionals and patients participated in a virtual conference to agree an evidence-based and informed expert consensus about PA and exercise for people with CF. This consensus presents the agreement across six themes: (i) patient and system centred outcomes, (ii) health benefits, iii) measurement, (iv) prescription, (v) clinical considerations, and (vi) future directions. The consensus was achieved by a stepwise process, involving: (i) written evidence-based synopses; (ii) peer critique of synopses; (iii) oral presentation to consensus group and peer challenge of revised synopses; and (iv) anonymous voting on final proposed synopses for adoption to the consensus statement. RESULTS: The final consensus document includes 24 statements which surpassed the consensus threshold (>80% agreement) out of 30 proposed statements. CONCLUSION: This consensus can be used to support health promotion by relevant stakeholders for people with CF.


Subject(s)
Cystic Fibrosis , Consensus , Cystic Fibrosis/therapy , Exercise , Health Promotion , Humans
14.
Function (Oxf) ; 3(4): zqac029, 2022.
Article in English | MEDLINE | ID: mdl-35774591

ABSTRACT

Adverse childhood experiences (ACEs) are traumatic events during the first years of life that are associated with a higher risk of developing cardiovascular disease (CVD) during adulthood. The medial prefrontal cortex (mPFC) is a core region in the brain that modulates emotions and is directly involved in the cardiovascular response to stress by increasing vascular resistance. In the present study we examined the relationship between ACEs, mPFC and peripheral vascular function. Forty-five, adults (33±5 yrs.) participated in the present study to evaluate cerebral hemodynamics and peripheral vascular function. The impact of adverse experiences was evaluated through the ACE questionnaire. Among those that experienced ACEs (ACE group, n = 22), there was a significantly (P < 0.001) reduced activation of the mPFC as well as greater peripheral vascular resistance observed in the small (P ≤ 0.035), conduit (P ≤ 0.042) and large (P ≤ 0.001) blood vessels, when compared to those that did not report ACEs (Control group, n = 23). In addition, relationships between the number of ACEs and mPFC activation (rs = -0.428; P = 0.003) and peripheral vascular function (rs ≤ -0.373; P ≤ 0.009) were observed. Findings from the present study support that adults who experienced ACEs exhibit a reduced activation of the mPFC along with systemic vascular dysfunction. In addition, individuals exposed to more childhood traumatic events exhibited a progressively greater inactivation of the mPFC and an increased peripheral vasoconstriction in a dose-dependent manner. These findings provide novel insights into the potential role that the brain and the peripheral vasculature may have in connecting adverse childhood events to the increased risk of CVD.


Subject(s)
Adverse Childhood Experiences , Cardiovascular Diseases , Adult , Humans , Cardiovascular Diseases/epidemiology , Surveys and Questionnaires , Hemodynamics
15.
Physiol Rep ; 10(10): e15335, 2022 05.
Article in English | MEDLINE | ID: mdl-35593213

ABSTRACT

Upregulation of endothelin-1 (ET-1) is the hallmark of various cardiovascular diseases (CVD). The purpose of the present study was to assess the ET-1 response to an acute bout of whole-body vibration (WBV) in humans and to determine the role of adiposity. Twenty-two participants volunteered for the study; they were grouped into overweight/obese [(OW/OB): n = 11, Age: 33 ± 4 years, Body mass index (BMI): 35 ± 10 kg/m2 ] or normal weight [(NW): n = 11, Age: 28 ± 7 years, BMI: 21 ± 2 kg/m2 ]. Participants engaged in 10 cycles of WBV exercise (1 cycle = 1 min WBV followed by 30 s of rest). Blood samples were analyzed for ET-1 pre-WBV (PRE), immediately post (POST), 1 h (1H), 3 h (3H), and 24 h (24H) post-WBV. There was a significant time main effect of WBV on circulating ET-1 (F = 12.5, p < 0.001); however, the ET-1 response was similar (F = 0.180, p = 0.677) between groups. Specifically, compared to PRE, a significant increase in ET-1 was observed at 1H (p = 0.017) and 3H (p = 0.025). In addition, concentrations of ET-1 were significantly lower at 24H compared to PRE (p = 0.019), 1H (p < 0.001), and 3H (p < 0.001). Maximal oxygen uptake during WBV was similar between the two groups. Acute WBV resulted in an initial rise in ET-1, followed by a significantly lower ET-1 at 24H in both groups. Findings support the utility of routine WBV exercise to elicit a decrease in ET-1 and improve CVD risk, similar to what has been reported with traditional modes of exercise.


Subject(s)
Cardiovascular Diseases , Vibration , Adult , Endothelin-1 , Exercise/physiology , Humans , Obesity/therapy , Young Adult
16.
Am J Physiol Endocrinol Metab ; 322(6): E508-E516, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35373585

ABSTRACT

Increased adiposity is associated with dysregulation of the endothelin system, both of which increase the risk of cardiovascular disease (CVD). Preclinical data indicate that endothelin dysregulation also reduces resting energy expenditure (REE). The objective was to test the hypothesis that endothelin receptor antagonism will increase REE in people with obesity compared with healthy weight individuals. Using a double blind, placebo-controlled, crossover design, 32 participants [healthy weight (HW): n = 16, BMI: 21.3 ± 2.8 kg/m2, age: 26 ± 7 yr and overweight/obese (OB): n = 16, BMI: 33.5 ± 9.5 kg/m2, age: 31 ± 6 yr] were randomized to receive either 125 mg of bosentan (ETA/B antagonism) or placebo twice per day for 3 days. Breath-by-breath gas exchange data were collected and REE was assessed by indirect calorimetry. Venous blood samples were analyzed for concentrations of endothelin-1 (ET-1). Treatment with bosentan increased plasma ET-1 in both OB and HW groups. Within the OB group, the changes in absolute REE (PLA: -77.6 ± 127.6 vs. BOS: 72.2 ± 146.6 kcal/day; P = 0.046). The change in REE was not different following either treatment in the HW group. Overall, absolute plasma concentrations of ET-1 following treatment with bosentan were significantly associated with kcal/day of fat (r = 0.488, P = 0.005), percentage of fat utilization (r = 0.415, P = 0.020), and inversely associated with the percentage of carbohydrates (r = -0.419, P = 0.019), and respiratory exchange ratio (r = -0.407, P = 0.023). Taken together, these results suggest that modulation of the endothelin system may represent a novel therapeutic approach to increase both resting metabolism and caloric expenditure, and reduce CVD risk in people with increased adiposity.NEW & NOTEWORTHY Findings from our current translational investigation demonstrate that dual endothelin A/B receptor antagonism increases total REE in overweight/obese individuals. These results suggest that modulation of the endothelin system may represent a novel therapeutic target to increase both resting metabolism and caloric expenditure, enhance weight loss, and reduce CVD risk in seemingly healthy individuals with elevated adiposity.


Subject(s)
Adiposity , Cardiovascular Diseases , Adult , Basal Metabolism , Bosentan , Calorimetry, Indirect , Endothelins/metabolism , Energy Metabolism , Humans , Obesity/metabolism , Overweight/metabolism , Receptors, Endothelin/metabolism , Young Adult
17.
Physiol Rep ; 10(5): e15208, 2022 03.
Article in English | MEDLINE | ID: mdl-35238491

ABSTRACT

Whole-body vibration (WBV) is an exercise mimetic that elicits beneficial metabolic effects. This study aims to investigate the effects of WBV amplitude on metabolic, inflammatory, and muscle oxygenation responses. Forty women and men were assigned to a high (HI; n = 20, Age: 31 ± 6 y) or a low-amplitude group (LO; n = 20, Age: 33 ± 6 y). Participants engaged in 10 cycles of WBV [1 cycle =1 min of vibration followed by 30 s of rest], while gastrocnemius muscle oxygen consumption (mVO2 ) was assessed using near-infrared spectroscopy (NIRS). Blood samples were collected PRE, POST, 1H, 3Hs, and 24H post-WBV and analyzed for insulin, glucose, and IL-6. In the LO group, Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) at 3 h (0.7 ± 0.2) was significantly lower compared to PRE (1.1 ± 0.2; p = 0.018), POST (1.3 ± 0.3; p = 0.045), 1H (1.3 ± 0.3; p = 0.010), and 24H (1.4 ± 0.2; p < 0.001). In addition, at 24H, HOMA-IR was significantly lower in the LO when compared to the HI group (LO: 1.4 ± 0.2 vs. HI: 2.2 ± 0.4; p = 0.030). mVO2 was higher (p = 0.003) in the LO (0.93 ± 0.29 ml/min/100 ml) when compared to the HI group (0.63 ± 0.28 ml/min/100 ml). IL-6 at 3H (LO: 13.2 ± 2.7 vs. HI: 19.6 ± 4.0 pg·ml-1 ; p = 0.045) and 24H (LO: 4.2 ± 1.1 vs. HI: 12.5 ± 3.1 pg·ml-1 ; p = 0.016) was greater in the HI compared to the LO group. These findings indicate that low-amplitude WBV provides greater metabolic benefits compared to high-amplitude WBV.


Subject(s)
Interleukin-6 , Vibration , Adult , Female , Glucose/metabolism , Humans , Inflammation/metabolism , Insulin/metabolism , Interleukin-6/metabolism , Male , Muscle, Skeletal/metabolism
18.
FASEB J ; 36(3): e22177, 2022 03.
Article in English | MEDLINE | ID: mdl-35142393

ABSTRACT

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Exosomes/metabolism , Neovascularization, Physiologic , Running , Superoxide Dismutase/metabolism , Animals , Cells, Cultured , Copper-Transporting ATPases/blood , Copper-Transporting ATPases/metabolism , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Exercise , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Physical Conditioning, Animal/methods , Rats , Superoxide Dismutase/blood
19.
J Appl Physiol (1985) ; 132(1): 73-83, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34762528

ABSTRACT

Obesity is associated with dysregulation of the endothelin system. In individuals with obesity, an exaggerated pressor response to acute stress is accompanied by increased circulating endothelin-1 (ET-1). The impact of combined endothelin A/B receptor (ETA/B) antagonism on the stress-induced pressor response in overweight/obese (OB) individuals is unknown. The objective of this study is to test the hypothesis that treatment with an ETA/B antagonist (bosentan) would reduce the stress-induced pressor response and arterial stiffness in overweight/obese compared with normal weight (NW) individuals. Forty participants [normal weight (NW): n = 20, body mass index (BMI): 21.7 ± 2.4 kg/m2 and overweight/obese (OB): n = 20, BMI: 33.8 ± 8.2 kg/m2] were randomized to placebo or 125 mg of bosentan twice a day (250 mg total) for 3 days. Hemodynamics were assessed before, during, and after a cold pressor test (CPT). Endothelin-1 was assessed at baseline and immediately after CPT. Following a washout period, the same protocol was repeated with the opposite treatment. The change from baseline in mean arterial pressure (MAP) during CPT following bosentan was significantly lower (P = 0.039) in the OB group than in the NW group (OB: 28 ± 12 vs. NW: 34 ± 15 mmHg). These results suggest that ETA/B antagonism favorably blunts the pressor response to acute stress in overweight/obese individuals.NEW & NOTEWORTHY Findings from our current translational investigation demonstrate that dual endothelin A/B receptor antagonism blunts the pressor response to acute stress in overweight/obese individuals. These results suggest that modulation of the endothelin system may represent a novel therapeutic target to reduce cardiovascular disease (CVD) risk by blunting the stress response in overweight/obese individuals.


Subject(s)
Obesity , Overweight , Blood Pressure , Endothelin B Receptor Antagonists , Endothelin Receptor Antagonists/pharmacology , Endothelin-1 , Endothelins , Female , Humans , Male , Obesity/drug therapy , Receptor, Endothelin A
SELECTION OF CITATIONS
SEARCH DETAIL
...