Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37221014

ABSTRACT

Black yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood. We have isolated 2 novel black yeasts from the genus Exophiala that were recovered from dryland biological soil crusts. Despite notable differences in colony and cellular morphology, both fungi appear to be members of the same species, which has been named Exophiala viscosa (i.e. E. viscosa JF 03-3 Goopy and E. viscosa JF 03-4F Slimy). A combination of whole genome sequencing, phenotypic experiments, and melanin regulation experiments have been performed on these isolates to fully characterize these fungi and help decipher their fundamental niche within the biological soil crust consortium. Our results reveal that E. viscosa is capable of utilizing a wide variety of carbon and nitrogen sources potentially derived from symbiotic microbes, can withstand many forms of abiotic stresses, and excretes melanin which can potentially provide ultraviolet resistance to the biological soil crust community. Besides the identification of a novel species within the genus Exophiala, our study also provides new insight into the regulation of melanin production in polyextremotolerant fungi.


Subject(s)
Exophiala , Melanins , Exophiala/genetics , Fungi , Ecosystem , Soil
2.
mSphere ; 7(3): e0008722, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35638358

ABSTRACT

Rapid evolution of fungal pathogens poses a serious threat to medicine and agriculture. The mutation rate determines the pace of evolution of a fungal pathogen. Hypermutator fungal strains have an elevated mutation rate owing to certain defects such as those in the DNA mismatch repair system. Studies in Saccharomyces cerevisiae show that hypermutators expedite evolution by generating beneficial alleles at a faster pace than the wild-type strains. However, an accumulation of deleterious alleles in a hypermutator may reduce its fitness. The balance between fitness cost and mutation benefit determines the prevalence of hypermutators in a population. This balance is affected by a complex interaction of ploidy, mode of reproduction, population size, and recent population history. Studies in human fungal pathogens like Aspergillus fumigatus, Candida albicans, Candida glabrata, Cryptococcus deuterogattii, and Cryptococcus neoformans have highlighted the importance of hypermutators in host adaptation and development of antifungal resistance. However, a critical examination of hypermutator biology, experimental evolution studies, and epidemiological studies suggests that hypermutators may impact evolutionary investigations. This review aims to integrate the knowledge about biology, experimental evolution, and dynamics of fungal hypermutators to critically examine the evolutionary role of hypermutators in fungal pathogen populations and project implications of hypermutators in the evolution of fungal plant pathogen populations. Understanding the factors determining the emergence and evolution of fungal hypermutators can open a novel avenue of managing rapidly evolving fungal pathogens in medicine and agriculture.


Subject(s)
Cryptococcus neoformans , Drug Resistance, Fungal , Aspergillus fumigatus/genetics , Candida glabrata/genetics , Cryptococcus neoformans/genetics , Drug Resistance, Fungal/genetics , Humans , Mutation Rate
3.
Microbiol Spectr ; 10(1): e0206321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107348

ABSTRACT

Septation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (ΔsepH, Δbud3, Δbud4, and Δrho4) and six antifungal compounds. Three of these compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors which activate the cell wall integrity signaling pathway (CWIS), while the three others (cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular processes not explicitly related to the cell wall. Our results show that deficiencies in septation lead to fungi which are more susceptible to cell wall-perturbing compounds but are no more susceptible to other antifungal compounds than a control. This implies that septa play a critical role in surviving cell wall stress. IMPORTANCE The ability to compartmentalize potentially lethal damage via septation appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress. However, it remains unknown whether this mechanism is deployed in response to all forms of stress or is limited to specific perturbations. Our results support the latter possibility by showing that presence of septa promotes survival in response to cell wall damage but plays no apparent role in coping with other unrelated forms of stress. Given that cell wall damage is a primary effect caused by exposure to the echinocandin class of antifungal agents, our results emphasize the important role that septa might play in enabling resistance to these drugs. Accordingly, the inhibition of septum formation could conceivably represent an attractive approach to potentiating the effects of echinocandins and mitigating resistance in human fungal pathogens.


Subject(s)
Aspergillus nidulans/growth & development , Aspergillus nidulans/physiology , Cell Wall/physiology , Antifungal Agents/pharmacology , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Cell Wall/drug effects , Cell Wall/genetics , Congo Red/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/drug effects , Hyphae/genetics , Hyphae/growth & development , Hyphae/metabolism , Micafungin/pharmacokinetics , Microbial Viability/drug effects , Stress, Physiological
4.
J Fungi (Basel) ; 7(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34210108

ABSTRACT

Fungal cell wall receptors relay messages about the state of the cell wall to the nucleus through the Cell Wall Integrity Signaling (CWIS) pathway. The ultimate role of the CWIS pathway is to coordinate repair of cell wall damage and to restore normal hyphal growth. Echinocandins such as micafungin represent a class of antifungals that trigger cell wall damage by affecting synthesis of ß-glucans. To obtain a better understanding of the dynamics of the CWIS response and its multiple effects, we have coupled dynamic transcriptome analysis with morphological studies of Aspergillus nidulans hyphae in responds to micafungin. Our results reveal that expression of the master regulator of asexual development, BrlA, is induced by micafungin exposure. Further study showed that micafungin elicits morphological changes consistent with microcycle conidiation and that this effect is abolished in the absence of MpkA. Our results suggest that microcycle conidiation may be a general response to cell wall perturbation which in some cases would enable fungi to tolerate or survive otherwise lethal damage.

5.
Can J Microbiol ; 67(1): 13-22, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32717148

ABSTRACT

Fungi critically impact the health and function of global ecosystems and economies. In Canada, fungal researchers often work within silos defined by subdiscipline and institutional type, complicating the collaborations necessary to understand the impacts fungi have on the environment, economy, and plant and animal health. Here, we announce the establishment of the Canadian Fungal Research Network (CanFunNet, https://fungalresearch.ca), whose mission is to strengthen and promote fungal research in Canada by facilitating dialogue among scientists. We summarize the challenges and opportunities for Canadian fungal research that were discussed at CanFunNet's inaugural meeting in 2019, and identify 4 priorities for our community: (i) increasing collaboration among scientists, (ii) studying diversity in the context of ecological disturbance, (iii) preserving culture collections in the absence of sustained funding, and (iv) leveraging diverse expertise to attract trainees. We have gathered additional information to support our recommendations, including a survey identifying underrepresentation of fungal-related courses at Canadian universities, a list of Canadian fungaria and culture collections, and a case study of a human fungal pathogen outbreak. We anticipate that these discussions will help prioritize fungal research in Canada, and we welcome all researchers to join this nationwide effort to enhance knowledge dissemination and funding advocacy.


Subject(s)
Fungi , Mycology/organization & administration , Research/organization & administration , Animals , Canada , Congresses as Topic , Ecosystem , Humans , Mycology/economics , Mycology/education , Research/economics
6.
Mol Cell Proteomics ; 19(8): 1310-1329, 2020 08.
Article in English | MEDLINE | ID: mdl-32430394

ABSTRACT

The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a ß-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8-4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Cell Wall/metabolism , Fungal Proteins/genetics , Phosphoproteins/genetics , Proteomics , Stress, Physiological/genetics , Transcriptome/genetics , Amino Acid Sequence , Aspergillus nidulans/drug effects , Aspergillus nidulans/growth & development , Cell Wall/drug effects , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Micafungin/pharmacology , Models, Biological , Mutation/genetics , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation/drug effects , Protein Kinases/metabolism , RNA-Seq , Reproducibility of Results , Stress, Physiological/drug effects , Transcriptome/drug effects
7.
Genetics ; 215(2): 449-461, 2020 06.
Article in English | MEDLINE | ID: mdl-32317285

ABSTRACT

Cytokinesis, as the final step of cell division, plays an important role in fungal growth and proliferation. In the filamentous fungus Aspergillus nidulans, defective cytokinesis is able to induce abnormal multinuclear or nonnucleated cells and then result in reduced hyphal growth and abolished sporulation. Previous studies have reported that a conserved contractile actin ring (CAR) protein complex and the septation initiation network (SIN) signaling kinase cascade are required for cytokinesis and septation; however, little is known about the role(s) of scaffold proteins involved in these two important cellular processes. In this study, we show that a septum-localized scaffold protein paxillin B (PaxB) is essential for cytokinesis/septation in A. nidulans The septation defects observed in a paxB deletion strain resemble those caused by the absence of another identified scaffold protein, α-actinin (AcnA). Deletion of α-actinin (AcnA) leads to undetectable PaxB at the septation site, whereas deletion of paxB does not affect the localization of α-actinin at septa. However, deletion of either α-actinin (acnA) or paxB causes the actin ring to disappear at septation sites during cytokinesis. Notably, overexpression of α-actinin acnA partially rescues the septum defects of the paxB mutant but not vice versa, suggesting AcnA may play a dominant role over that of PaxB for cytokinesis and septation. In addition, PaxB and α-actinin affect the septal dynamic localization of MobA, a conserved component of the SIN pathway, suggesting they may affect the SIN protein complex function at septa. Protein pull-down assays combined with liquid chromatography-mass spectrometry identification indicate that α-actinin AcnA and PaxB likely do not directly interact, but presumably belong to an actin cytoskeleton protein network that is required for the assembly and contraction of the CAR. Taken together, findings in this study provide novel insights into the roles of conserved scaffold proteins during fungal septation in A. nidulans.


Subject(s)
Actinin/metabolism , Actins/physiology , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Paxillin/metabolism , Actinin/genetics , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Cytokinesis , Fungal Proteins/genetics , Paxillin/genetics , Signal Transduction
8.
iScience ; 23(4): 100980, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32240950

ABSTRACT

The polyextremotolerant black yeast Exophiala dermatitidis is a tractable model system for investigation of adaptations that support growth under extreme conditions. Foremost among these adaptations are melanogenesis and carotenogenesis. A particularly important question is their metabolic production cost. However, investigation of this issue has been hindered by a relatively poor systems-level understanding of E. dermatitidis metabolism. To address this challenge, a genome-scale model (iEde2091) was developed. Using iEde2091, carotenoids were found to be more expensive to produce than melanins. Given their overlapping protective functions, this suggests that carotenoids have an underexplored yet important role in photo-protection. Furthermore, multiple defensive pigments with overlapping functions might allow E. dermatitidis to minimize cost. Because iEde2091 revealed that E. dermatitidis synthesizes the same melanins as humans and the active sites of the key tyrosinase enzyme are highly conserved this model may enable a broader understanding of melanin production across kingdoms.

9.
mBio ; 10(2)2019 04 30.
Article in English | MEDLINE | ID: mdl-31040248

ABSTRACT

In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a pkaA deletion strain (ΔpkaA) to identify Aspergillus nidulans proteins for which phosphorylation is dependent (either directly or indirectly) on PKA. A combination of phosphoproteomic and transcriptomic analyses revealed both direct and indirect targets of PKA and provided a global perspective on its function. One of these targets was the transcription factor CreA, the main repressor responsible for carbon catabolite repression (CCR). In the ΔpkaA strain, we identified a previously unreported phosphosite in CreA, S319, which (based on motif analysis) appears to be a direct target of Stk22 kinase (AN5728). Upon replacement of CreA S319 with an alanine (i.e., phosphonull mutant), the dynamics of CreA import to the nucleus are affected. Collectively, this work provides a global overview of PKA function while also providing novel insight regarding significance of a specific PKA-mediated phosphorylation event.IMPORTANCE The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway is well conserved across eukaryotes, and previous work has shown that it plays an important role in regulating development, growth, and virulence in a number of fungi. PKA is activated in response to extracellular nutrients and acts to regulate metabolism and growth. While a number of components in the PKA pathway have been defined in filamentous fungi, current understanding does not provide a global perspective on PKA function. Thus, this work is significant in that it comprehensively identifies proteins and functional pathways regulated by PKA in a model filamentous fungus. This information enhances our understanding of PKA action and may provide information on how to manipulate it for specific purposes.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Bacterial , Phosphoproteins/analysis , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Aspergillus nidulans/chemistry , Fungal Proteins/genetics , Gene Deletion , Gene Expression Profiling , Proteome/analysis , Repressor Proteins/genetics
10.
Dev Biol ; 451(1): 35-39, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30831088

ABSTRACT

In filamentous fungi, the formation of hyphal branches is a critical process that supports the ability of mycelia to radiate across and colonize growth substrates. Branching can occur at hyphal tips (apical branching) or from subapical hyphal compartments (lateral branching). The primary focus of this review is on lateral branching. Current understanding of the physiological and molecular mechanisms that underlie the formation of lateral branches is summarized. This includes emphasis on the spatial regulation of branch formation as well as the roles of the morphogenetic machinery in branch emergence. An improved understanding of hyphal branching will provide greater insight into the morphological differentiation of fungal mycelia.


Subject(s)
Fungi/physiology , Hyphae/physiology
11.
Fungal Genet Biol ; 125: 1-12, 2019 04.
Article in English | MEDLINE | ID: mdl-30639305

ABSTRACT

The protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth. In an effort to seek other, as yet unknown, connections to this pathway, an mpkA deletion mutant (ΔmpkA) was subjected to phosphoproteomic and transcriptomic analysis. When compared to the control (isogenic parent of ΔmpkA), there is strong evidence suggesting MpkA is involved with maintaining cell wall strength, branching regulation, and the iron starvation pathway, among others. Particle-size analysis during shake flask growth revealed ΔmpkA mycelia were about 4 times smaller than the control strain and more than 90 cell wall related genes show significantly altered expression levels. The deletion mutant had a significantly higher branching rate than the control and phosphoproteomic results show putative branching-regulation proteins, such as CotA, LagA, and Cdc24, have a significantly different level of phosphorylation. When grown in iron limited conditions, ΔmpkA had no difference in growth rate or production of siderophores, whereas the control strain showed decreased growth rate and increased siderophore production. Transcriptomic data revealed over 25 iron related genes with altered transcript levels. Results suggest MpkA is involved with regulation of broad cellular functions in the absence of stress.


Subject(s)
Aspergillus nidulans/genetics , Mitogen-Activated Protein Kinases/genetics , Phosphoproteins/genetics , Transcriptome/genetics , Aspergillus nidulans/enzymology , Aspergillus nidulans/growth & development , Cell Cycle Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Fungal/genetics , Iron/metabolism , Sequence Deletion/genetics , Signal Transduction/genetics
12.
Sci Rep ; 8(1): 11433, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061727

ABSTRACT

Filamentous fungi are widely used in the production of a variety of industrially relevant enzymes and proteins as they have the unique ability to secrete tremendous amounts of proteins. However, the secretory pathways in filamentous fungi are not completely understood. Here, we investigated the role of a mutation in the POlarity Defective (podB) gene on growth, protein secretion, and cell wall organization in Aspergillus nidulans using a temperature sensitive (Ts) mutant. At restrictive temperature, the mutation resulted in lack of biomass accumulation, but led to a significant increase in specific protein productivity. Proteomic analysis of the secretome showed that the relative abundance of 584 (out of 747 identified) proteins was altered due to the mutation. Of these, 517 were secreted at higher levels. Other phenotypic differences observed in the mutant include up-regulation of unfolded protein response (UPR), deformation of Golgi apparatus and uneven cell wall thickness. Furthermore, proteomic analysis of cell wall components in the mutant revealed the presence of intracellular proteins in higher abundance accompanied by lower levels of most cell wall proteins. Taken together, results from this study suggest the importance of PodB as a target when engineering fungal strains for enhanced secretion of valuable biomolecules.


Subject(s)
Aspergillus nidulans/cytology , Aspergillus nidulans/metabolism , Cell Wall/metabolism , Fungal Proteins/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Cell Wall/ultrastructure , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genotype , Hyphae/ultrastructure , Mutation/genetics , Phenotype , Proteomics , Temperature , Unfolded Protein Response , Up-Regulation
13.
Microbiol Spectr ; 5(2)2017 04.
Article in English | MEDLINE | ID: mdl-28429675

ABSTRACT

Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.


Subject(s)
Fungi/physiology , Hyphae/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/physiology , Fungi/cytology , Fungi/genetics , Fungi/growth & development , Hyphae/cytology , Hyphae/growth & development , Hyphae/metabolism
14.
Sci Rep ; 7: 45073, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28361917

ABSTRACT

One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.


Subject(s)
Aspergillus nidulans/metabolism , Carbohydrate Metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Signal Transduction , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Carbohydrate Metabolism/genetics , Computational Biology/methods , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Gene Ontology , Glucose/pharmacology , Glucose Transport Proteins, Facilitative/genetics , Phenotype , Protein Binding , Protein Transport , Signal Transduction/drug effects , Transcription, Genetic , ras Proteins/metabolism
15.
Fungal Genet Biol ; 104: 38-44, 2017 07.
Article in English | MEDLINE | ID: mdl-28288883

ABSTRACT

Protein phosphorylation is a major means of regulation for cellular processes, and is important in cell signaling, growth, and cell proliferation. To study phosphorylated proteins, high throughput phosphoproteomic technologies, such as reverse phase protein array, phospho-specific flow cytometry, and mass spectrometry (MS) based technologies, have been developed. Among them, mass spectrometry has become the primary tool employed for the identification of phosphoproteins and phosphosites in fungi, leading to an improved understanding of a number of signaling pathways. Using mass spectrometry techniques, researchers have discovered new kinase substrates, established connections between kinases and fungal pathogenicity, and studied the evolutionary lineage of kinases between different fungal species. Further, many specific phosphorylation sites recognized by individual kinases have been described. In this review, we will focus on recent discoveries made in yeast and filamentous fungi using phosphoproteomic analysis.


Subject(s)
Fungal Proteins/metabolism , Fungi/metabolism , Phosphoproteins/metabolism , Biological Evolution , Catalytic Domain , Fungi/pathogenicity , Phosphorylation , Phosphotransferases/metabolism , Proteomics
16.
Mycologia ; 108(3): 543-55, 2016.
Article in English | MEDLINE | ID: mdl-26932184

ABSTRACT

The Rho-related family of GTPases are pivotal regulators of morphogenetic processes in diverse eukaryotic organisms. In the filamentous fungi two related members of this family, Cdc42 and Rac1, perform particularly important roles in the establishment and maintenance of hyphal polarity. The activity of these GTPases is tightly controlled by two sets of regulators: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the importance of Cdc42 and Rac1 in polarized hyphal growth, the morphogenetic functions of their cognate GEFs and GAPs have not been widely characterized in filamentous fungi outside the Saccharomycotina. Here we present a functional analysis of the Aspergillus nidulans homologs of the yeast GEF Cdc24 and the yeast GAP Rga1. We show that Cdc24 is required for the establishment of hyphal polarity and localizes to hyphal tips. We also show that Rga1 is necessary for the suppression of branching in developing conidiophores. During asexual development Rga1 appears to act primarily via Cdc42 and in doing so serves as a critical determinant of conidiophore architecture. Our results provide new insight into the roles of Cdc42 during development in A nidulans.


Subject(s)
Aspergillus nidulans/enzymology , Fungal Proteins/metabolism , Hyphae/growth & development , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Hyphae/enzymology , Hyphae/genetics , Morphogenesis , cdc42 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics
17.
Proteomics ; 14(21-22): 2454-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25116090

ABSTRACT

We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715).


Subject(s)
Aspergillus nidulans/cytology , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Phosphoproteins/metabolism , Protein Interaction Mapping , Proteome/metabolism , Proteomics , Systems Biology
18.
Eukaryot Cell ; 13(7): 909-18, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24792348

ABSTRACT

Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Catalase/genetics , Catalase/metabolism , Fumonisins/metabolism , Fusarium/drug effects , Fusarium/genetics , Fusarium/physiology , Oxidants/pharmacology , Reactive Oxygen Species/metabolism , Spores, Fungal/growth & development
19.
Eukaryot Cell ; 13(3): 427-36, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24465002

ABSTRACT

The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.


Subject(s)
DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Fusarium/genetics , Genome, Fungal , Genomic Instability , Transcription Factors/metabolism , Amino Acid Sequence , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Fusarium/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulatory Factor X Transcription Factors , Transcription Factors/genetics , Up-Regulation
20.
PLoS One ; 8(11): e81603, 2013.
Article in English | MEDLINE | ID: mdl-24312325

ABSTRACT

The contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the wheat pathogen F. graminearum. GPI-APs are surface proteins that are attached to either the membrane or cell wall. In order to simultaneously disrupt several GPI-APs, a phosphoethanolamine transferase-encoding gene gpi7 was deleted and the resultant mutant characterized in terms of growth, development, and virulence. The Δgpi7 mutants exhibited slower radial growth rates and aberrantly shaped macroconidia. Furthermore, virulence tests and microscopic analyses indicated that Gpi7 is required for ramification of the fungus throughout the rachis of wheat heads. In parallel, bioinformatics tools were utilized to predict and inventory GPI-APs within the proteome of F. graminearum. Two of the genes identified in this screen (FGSG_01588 and FGSG_08844) displayed isolate-specific length variability as observed for other fungal cell wall adhesion genes. Nevertheless, deletion of these genes failed to reveal obvious defects in growth, development, or virulence. This research demonstrates the global importance of GPI-APs to in planta proliferation in F. graminearum, and also highlights the potential of individual GPI-APs as diagnostic markers.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Fusarium/pathogenicity , Glycosylphosphatidylinositols/metabolism , Computational Biology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fusarium/genetics , Mutation , Repetitive Sequences, Amino Acid , Species Specificity , Triticum/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...