Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 353(1): 213-33, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25665805

ABSTRACT

Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests that metabotropic glutamate receptor 5 (mGlu5) inhibitors have antidepressant-like properties. Basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]-pyridine) is a novel mGlu5 negative allosteric modulator currently in phase 2 clinical development for MDD and fragile X syndrome. Here, the comprehensive preclinical pharmacological profile of basimglurant is presented with a focus on its therapeutic potential for MDD and drug-like properties. Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. In microdialysis studies, basimglurant had no effect on monoamine transmitter levels in the frontal cortex or nucleus accumbens except for a moderate increase of accumbal dopamine, which is in line with its lack of pharmacological activity on monoamine reuptake transporters. These data taken together, basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Depression/drug therapy , Imidazoles/pharmacology , Pyridines/pharmacology , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Allosteric Regulation , Animals , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/therapeutic use , Biogenic Monoamines/metabolism , Brain/metabolism , Cells, Cultured , Cricetulus , Depression/metabolism , Depression/psychology , Drug Inverse Agonism , Electroencephalography , Female , Imidazoles/pharmacokinetics , Imidazoles/therapeutic use , Macaca fascicularis , Male , Mice , Pain/drug therapy , Pain/physiopathology , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Radioligand Assay , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Metabotropic Glutamate 5/metabolism , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/physiopathology
2.
J Med Chem ; 54(19): 6888-904, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21870878

ABSTRACT

A novel tertiary amine series of potent muscarinic M(3) receptor antagonists are described that exhibit potential as inhaled long-acting bronchodilators for the treatment of chronic obstructive pulmonary disease. Geminal dimethyl functionality present in this series of compounds confers very long dissociative half-life (slow off-rate) from the M(3) receptor that mediates very long-lasting smooth muscle relaxation in guinea pig tracheal strips. Optimization of pharmacokinetic properties was achieved by combining rapid oxidative clearance with targeted introduction of a phenolic moiety to secure rapid glucuronidation. Together, these attributes minimize systemic exposure following inhalation, mitigate potential drug-drug interactions, and reduce systemically mediated adverse events. Compound 47 (PF-3635659) is identified as a Phase II clinical candidate from this series with in vivo duration of action studies confirming its potential for once-daily use in humans.


Subject(s)
Azetidines/chemical synthesis , Bronchodilator Agents/chemical synthesis , Diphenylacetic Acids/chemical synthesis , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptor, Muscarinic M3/antagonists & inhibitors , Administration, Inhalation , Animals , Azetidines/chemistry , Azetidines/pharmacology , Bronchodilator Agents/chemistry , Bronchodilator Agents/pharmacology , CHO Cells , Cell Line , Cell Membrane Permeability , Cricetinae , Cricetulus , Diphenylacetic Acids/chemistry , Diphenylacetic Acids/pharmacology , Dogs , Female , Guinea Pigs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Kinetics , Male , Microsomes, Liver/metabolism , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Radioligand Assay , Rats , Receptor, Muscarinic M3/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship , Trachea/drug effects , Trachea/physiology
3.
Bioorg Med Chem Lett ; 20(12): 3788-92, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20471260

ABSTRACT

New N-(1,2-diphenylethyl)piperazines 6 are disclosed as dual serotonin and noradrenaline reuptake inhibitors (SNRI) which may have potential in treating stress urinary incontinence (SUI). In this Letter, we present new data for SNRI PF-526014 (4) including performance in a canine in vivo model of SUI, cardiovascular assessment, pharmacokinetics in dog and determination of the primary routes of metabolism in vitro. Starting from 4, detailed structure activity relationships established that potent dual SNRIs could be achieved by appropriate substitution of the phenyl rings (6: R; R(1)) combined with a preferred stereochemistry. From this set of compounds, piperazine (-)-6a was identified as a potent and selective dual SNRI with improved metabolic stability and reduced ion channel activity when compared to 4. Based on this profile, (-)-6a was selected for further evaluation in a preclinical model of SUI.


Subject(s)
Adrenergic Uptake Inhibitors/chemistry , Norepinephrine , Piperazines/chemistry , Selective Serotonin Reuptake Inhibitors/chemistry , Urinary Incontinence, Stress/drug therapy , Adrenergic Uptake Inhibitors/metabolism , Adrenergic Uptake Inhibitors/pharmacokinetics , Animals , Dogs , Humans , Piperazines/metabolism , Piperazines/pharmacology , Selective Serotonin Reuptake Inhibitors/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(17): 5078-81, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19647430

ABSTRACT

The structure-activity relationship and the synthesis of novel N-[(3S)-pyrrolidin-3-yl]benzamides as dual serotonin and noradrenaline monoamine reuptake inhibitors (SNRI) is described. Preferred compound 9 aka PF-184,298 is a potent SNRI with good selectivity over dopamine reuptake inhibition (DRI), good in vitro metabolic stability, weak CYP inhibition and drug-like physicochemical properties consistent with CNS target space. Evaluation in an in vivo preclinical model of stress urinary incontinence showed 9 significantly increased urethral tone at free plasma concentrations consistent with its in vitro primary pharmacology.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adrenergic Uptake Inhibitors/chemistry , Anilides/chemistry , Benzamides/chemistry , Central Nervous System/metabolism , Pyrrolidines/chemistry , Selective Serotonin Reuptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacokinetics , Anilides/chemical synthesis , Anilides/pharmacology , Animals , Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Cell Line , Dogs , Dopamine Uptake Inhibitors/chemical synthesis , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/pharmacokinetics , Humans , Norepinephrine/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Rats , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Structure-Activity Relationship
6.
S Afr Med J ; 92(2): 96-7, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11894658
SELECTION OF CITATIONS
SEARCH DETAIL
...