Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 531(14): 1425-1442, 2023 10.
Article in English | MEDLINE | ID: mdl-37537886

ABSTRACT

Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.


Subject(s)
Nociceptors , Sensory Receptor Cells , Rats , Mice , Animals , 3' Untranslated Regions , Nociceptors/metabolism , Sensory Receptor Cells/metabolism , Pain/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ganglia, Spinal/metabolism
2.
Data (Basel) ; 7(6)2022 Jun.
Article in English | MEDLINE | ID: mdl-36248261

ABSTRACT

Paclitaxel-induced peripheral neuropathy is a condition of nerve degeneration induced by chemotherapy, which afflicts up to 70% of treated patients. Therapeutic interventions are unavailable due to an incomplete understanding of the underlying mechanisms. We previously discovered that major physiological changes in the skin underlie paclitaxel-induced peripheral neuropathy in zebrafish and rodents. The precise molecular mechanisms are only incompletely understood. For instance, paclitaxel induces the upregulation of MMP-13, which, when inhibited, prevents axon degeneration. To better understand other gene regulatory changes induced by paclitaxel, we induced peripheral neuropathy in mice following intraperitoneal injection either with vehicle or paclitaxel every other day four times total. Skin and dorsal root ganglion neurons were collected based on distinct behavioural responses categorised as "pain onset" (d4), "maximal pain" (d7), "beginning of pain resolution" (d11), and "recovery phase" (d23) for comparative longitudinal RNA sequencing. The generated datasets validate previous discoveries and reveal additional gene expression changes that warrant further validation with the goal to aid in the development of drugs that prevent or reverse paclitaxel-induced peripheral neuropathy.

3.
Front Genet ; 10: 182, 2019.
Article in English | MEDLINE | ID: mdl-30915105

ABSTRACT

The length of untranslated regions at the 3' end of transcripts (3'UTRs) is regulated by alternate polyadenylation (APA). 3'UTRs contain regions that harbor binding motifs for regulatory molecules. However, the mechanisms that coordinate the 3'UTR length of specific groups of transcripts are not well-understood. We therefore developed a method, CSI-UTR, that models 3'UTR structure as tandem segments between functional alternative-polyadenylation sites (termed cleavage site intervals-CSIs). This approach facilitated (1) profiling of 3'UTR isoform expression changes and (2) statistical enrichment of putative regulatory motifs. CSI-UTR analysis is UTR-annotation independent and can interrogate legacy data generated from standard RNA-Seq libraries. CSI-UTR identified a set of CSIs in human and rodent transcriptomes. Analysis of RNA-Seq datasets from neural tissue identified differential expression events within 3'UTRs not detected by standard gene-based differential expression analyses. Further, in many instances 3'UTR and CDS from the same gene were regulated differently. This modulation of motifs for RNA-interacting molecules with potential condition-dependent and tissue-specific RNA binding partners near the polyA signal and CSI junction may play a mechanistic role in the specificity of alternative polyadenylation. Source code, CSI BED files and example datasets are available at: https://github.com/UofLBioinformatics/CSI-UTR.

4.
BMC Genomics ; 18(Suppl 10): 875, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29244006

ABSTRACT

BACKGROUND: Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. RESULTS: We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. CONCLUSION: Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.


Subject(s)
Databases, Genetic , Oligonucleotide Array Sequence Analysis , Statistics as Topic/methods , Gene Expression Profiling , Humans , Molecular Sequence Annotation
5.
Exp Neurol ; 283(Pt A): 413-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27264359

ABSTRACT

Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage.


Subject(s)
Nociception/physiology , Nociceptive Pain/etiology , Sensory Receptor Cells/metabolism , Skin Diseases/complications , Skin Diseases/pathology , Transcription Factor 3/metabolism , Up-Regulation/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Disease Models, Animal , Female , Functional Laterality , GAP-43 Protein/metabolism , Ganglia, Spinal/pathology , Glycoproteins/metabolism , Lectins/metabolism , Neuropeptide Y/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factor 3/genetics , Versicans
6.
J Neurosci ; 36(15): 4259-75, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27076424

ABSTRACT

Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT: Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Axons/physiology , Cytoskeletal Proteins/physiology , Nerve Growth Factors/physiology , Neuronal Plasticity/physiology , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Differentiation/genetics , Class Ia Phosphatidylinositol 3-Kinase/physiology , Cytoskeletal Proteins/genetics , Endosomes/metabolism , Female , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/genetics , Pseudopodia/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Receptor, trkA/physiology , Signal Transduction/genetics
7.
Genom Data ; 6: 249-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26697387

ABSTRACT

Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the "spared dermatome" model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact ("naïve") sensory ganglia. Data has been deposited into GEO (GSE72551).

8.
Front Genet ; 5: 98, 2014.
Article in English | MEDLINE | ID: mdl-24808906

ABSTRACT

Assessment of high-throughput-omics data initially focuses on relative or raw levels of a particular feature, such as an expression value for a transcript, protein, or metabolite. At a second level, analyses of annotations including known or predicted functions and associations of each individual feature, attempt to distill biological context. Most currently available comparative- and meta-analyses methods are dependent on the availability of identical features across data sets, and concentrate on determining features that are differentially expressed across experiments, some of which may be considered "biomarkers." The heterogeneity of measurement platforms and inherent variability of biological systems confounds the search for robust biomarkers indicative of a particular condition. In many instances, however, multiple data sets show involvement of common biological processes or signaling pathways, even though individual features are not commonly measured or differentially expressed between them. We developed a methodology, categoryCompare, for cross-platform and cross-sample comparison of high-throughput data at the annotation level. We assessed the utility of the approach using hypothetical data, as well as determining similarities and differences in the set of processes in two instances: (1) denervated skin vs. denervated muscle, and (2) colon from Crohn's disease vs. colon from ulcerative colitis (UC). The hypothetical data showed that in many cases comparing annotations gave superior results to comparing only at the gene level. Improved analytical results depended as well on the number of genes included in the annotation term, the amount of noise in relation to the number of genes expressing in unenriched annotation categories, and the specific method in which samples are combined. In the skin vs. muscle denervation comparison, the tissues demonstrated markedly different responses. The Crohn's vs. UC comparison showed gross similarities in inflammatory response in the two diseases, with particular processes specific to each disease.

9.
J Comp Neurol ; 522(2): 308-36, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-23817991

ABSTRACT

Calcium/calmodulin-dependent protein kinase 4 (gene and transcript: CaMK4; protein: CaMKIV) is the nuclear effector of the Ca(2+) /calmodulin kinase (CaMK) pathway where it coordinates transcriptional responses. However, CaMKIV is present in the cytoplasm and axons of subpopulations of neurons, including some sensory neurons of the dorsal root ganglia (DRG), suggesting an extranuclear role for this protein. We observed that CaMKIV was expressed strongly in the cytoplasm and axons of a subpopulation of small-diameter DRG neurons, most likely cutaneous nociceptors by virtue of their binding the isolectin IB4. In IB4+ spinal nerve axons, 20% of CaMKIV was colocalized with the endocytic marker Rab7 in axons that highly expressed CAM-kinase-kinase (CAMKK), an upstream activator of CaMKIV, suggesting a role for CaMKIV in signaling though signaling endosomes. Using fluorescent in situ hybridization (FISH) with riboprobes, we also observed that small-diameter neurons expressed high levels of a novel 3' untranslated region (UTR) variant of CaMK4 mRNA. Using rapid amplification of cDNA ends (RACE), reverse-transcription polymerase chain reaction (RT-PCR) with gene-specific primers, and cDNA sequencing analyses we determined that the novel transcript contains an additional 10 kb beyond the annotated gene terminus to a highly conserved alternate polyadenylation site. Quantitative PCR (qPCR) analyses of fluorescent-activated cell sorted (FACS) DRG neurons confirmed that this 3'-UTR-extended variant was preferentially expressed in IB4-binding neurons. Computational analyses of the 3'-UTR sequence predict that UTR-extension introduces consensus sites for RNA-binding proteins (RBPs) including the embryonic lethal abnormal vision (ELAV)/Hu family proteins. We consider the possible implications of axonal CaMKIV in the context of the unique properties of IB4-binding DRG neurons.


Subject(s)
3' Untranslated Regions , Axons/enzymology , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Nociceptors/metabolism , Sensory Receptor Cells/enzymology , Aging , Animals , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinase Type 4/genetics , Flow Cytometry , Fluorescent Antibody Technique , Ganglia, Spinal/enzymology , Gene Knockout Techniques , Humans , In Situ Hybridization, Fluorescence , Isoenzymes/genetics , Isoenzymes/metabolism , Lectins , Microscopy, Confocal , Pain/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
10.
J Neurotrauma ; 31(9): 819-33, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24294909

ABSTRACT

Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits.


Subject(s)
Motor Activity/physiology , Physical Therapy Modalities , Recovery of Function/physiology , Spinal Cord Injuries/rehabilitation , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Electromyography , Hyperalgesia/physiopathology , Male , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Spinal Cord Injuries/physiopathology , Urinary Bladder/physiopathology , Urination/physiology
11.
Article in English | MEDLINE | ID: mdl-25632406

ABSTRACT

High-throughput mRNA sequencing (also known as RNA-Seq) promises to be the technique of choice for studying transcriptome profiles. This technique provides the ability to develop precise methodologies for transcript and gene expression quantification, novel transcript and exon discovery, and splice variant detection. One of the limitations of current RNA-Seq methods is the dependency on annotated biological features (e.g. exons, transcripts, genes) to detect expression differences across samples. This forces the identification of expression levels and the detection of significant changes to known genomic regions. Any significant changes that occur in unannotated regions will not be captured. To overcome this limitation, we developed a novel segmentation approach, Island-Based (IB), for analyzing differential expression in RNA-Seq and targeted sequencing (exome capture) data without specific knowledge of an isoform. The IB segmentation determines individual islands of expression based on windowed read counts that can be compared across experimental conditions to determine differential island expression. In order to detect differentially expressed genes, the significance of islands (p-values) are combined using Fisher's method. We tested and evaluated the performance of our approach by comparing it to the existing differentially expressed gene (DEG) methods: CuffDiff, DESeq, and edgeR using two benchmark MAQC RNA-Seq datasets. The IB algorithm outperforms all three methods in both datasets as illustrated by an increased auROC.

12.
BMC Bioinformatics ; 13: 229, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22967011

ABSTRACT

BACKGROUND: High-throughput molecular biology techniques yield vast amounts of data, often by detecting small portions of ribonucleotides corresponding to specific identifiers. Existing bioinformatic methodologies categorize and compare these elements using inferred descriptive annotation given this sequence information irrespective of the fact that it may not be representative of the identifier as a whole. RESULTS: All annotations, no matter the granularity, can be aligned to genomic sequences and therefore annotated by genomic intervals. We have developed AbsIDconvert, a methodology for converting between genomic identifiers by first mapping them onto a common universal coordinate system using an interval tree which is subsequently queried for overlapping identifiers. AbsIDconvert has many potential uses, including gene identifier conversion, identification of features within a genomic region, and cross-species comparisons. The utility is demonstrated in three case studies: 1) comparative genomic study mapping plasmodium gene sequences to corresponding human and mosquito transcriptional regions; 2) cross-species study of Incyte clone sequences; and 3) analysis of human Ensembl transcripts mapped by Affymetrix®; and Agilent microarray probes. AbsIDconvert currently supports ID conversion of 53 species for a given list of input identifiers, genomic sequence, or genome intervals. CONCLUSION: AbsIDconvert provides an efficient and reliable mechanism for conversion between identifier domains of interest. The flexibility of this tool allows for custom definition identifier domains contingent upon the availability and determination of a genomic mapping interval. As the genomes and the sequences for genetic elements are further refined, this tool will become increasingly useful and accurate. AbsIDconvert is freely available as a web application or downloadable as a virtual machine at: http://bioinformatics.louisville.edu/abid/.


Subject(s)
Chromosome Mapping , Computational Biology/methods , Genomics/methods , Molecular Sequence Annotation/methods , Animals , Culicidae/genetics , Genome , Humans , Internet , Plasmodium/genetics
13.
Front Physiol ; 3: 478, 2012.
Article in English | MEDLINE | ID: mdl-23316162

ABSTRACT

Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.

14.
J Pain ; 11(11): 1066-73, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20627820

ABSTRACT

UNLABELLED: Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE: Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.


Subject(s)
Axons/metabolism , Axons/pathology , Gene Expression Regulation , Nerve Regeneration/genetics , Sensory Receptor Cells/metabolism , Skin/injuries , Spinal Cord/surgery , Animals , Dermatologic Surgical Procedures , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/cytology , Sensory Receptor Cells/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Transcription, Genetic
15.
Am J Hum Genet ; 82(1): 222-7, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18179903

ABSTRACT

Multiple pterygium syndromes (MPS) comprise a group of multiple congenital anomaly disorders characterized by webbing (pterygia) of the neck, elbows, and/or knees and joint contractures (arthrogryposis). MPS are phenotypically and genetically heterogeneous but are traditionally divided into prenatally lethal and nonlethal (Escobar) types. Previously, we and others reported that recessive mutations in the embryonal acetylcholine receptor g subunit (CHRNG) can cause both lethal and nonlethal MPS, thus demonstrating that pterygia resulted from fetal akinesia. We hypothesized that mutations in acetylcholine receptor-related genes might also result in a MPS/fetal akinesia phenotype and so we analyzed 15 cases of lethal MPS/fetal akinesia without CHRNG mutations for mutations in the CHRNA1, CHRNB1, CHRND, and rapsyn (RAPSN) genes. No CHRNA1, CHRNB1, or CHRND mutations were detected, but a homozygous RAPSN frameshift mutation, c.1177-1178delAA, was identified in a family with three children affected with lethal fetal akinesia sequence. Previously, RAPSN mutations have been reported in congenital myasthenia. Functional studies were consistent with the hypothesis that whereas incomplete loss of rapsyn function may cause congenital myasthenia, more severe loss of function can result in a lethal fetal akinesia phenotype.


Subject(s)
Abnormalities, Multiple/genetics , Fetal Diseases/genetics , Muscle Proteins/genetics , Receptors, Cholinergic/genetics , Receptors, Nicotinic/genetics , Amino Acid Sequence , Arthrogryposis/genetics , Base Sequence , Child , Humans , Molecular Sequence Data , Muscle Proteins/chemistry , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...