Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Med Chem ; 65(13): 9063-9075, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35785990

ABSTRACT

N-Methyl-d-aspartate receptor (NMDAR) positive allosteric modulators (PAMs) have received increased interest as a powerful mechanism of action to provide relief as therapies for CNS disorders. Sage Therapeutics has previously published the discovery of endogenous neuroactive steroid 24(S)-hydroxycholesterol as an NMDAR PAM. In this article, we detail the discovery of development candidate SAGE-718 (5), a potent and high intrinsic activity NMDAR PAM with an optimized pharmacokinetic profile for oral dosing. Compound 5 has completed phase 1 single ascending dose and multiple ascending dose clinical trials and is currently undergoing phase 2 clinical trials for treatment of cognitive impairment in Huntington's disease.


Subject(s)
Central Nervous System Diseases , Cognitive Dysfunction , Neurosteroids , Allosteric Regulation , Cognitive Dysfunction/drug therapy , Humans , Receptors, N-Methyl-D-Aspartate/metabolism
2.
J Med Chem ; 62(16): 7526-7542, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31390523

ABSTRACT

Neuroactive steroids (NASs) play a pivotal role in maintaining homeostasis is the CNS. We have discovered that one NAS in particular, 24(S)-hydroxycholesterol (24(S)-HC), is a positive allosteric modulator (PAM) of NMDA receptors. Using 24(S)-HC as a chemical starting point, we have identified other NASs that have good in vitro potency and efficacy. Herein, we describe the structure activity relationship and pharmacokinetic optimization of this series that ultimately led to SGE-301 (42). We demonstrate that SGE-301 enhances long-term potentiation (LTP) in rat hippocampal slices and, in a dose-dependent manner, improves cognition in a rat social recognition study.


Subject(s)
Allosteric Regulation , Neurosteroids/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Age Factors , Animals , Cognition/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Humans , Long-Term Potentiation/drug effects , Male , Methylation , Molecular Structure , Neurosteroids/chemistry , Neurosteroids/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 28(2): 61-70, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29223589

ABSTRACT

Endogenous and synthetic neuroactive steroids (NASs) or neurosteroids are effective modulators of multiple signaling pathways including receptors for the γ-aminobutyric acid A (GABAA) and glutamate, in particular N-methyl-d-aspartate (NMDA). These receptors are the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS), and there is growing evidence suggesting that dysregulation of neurosteroid production plays a role in numerous neurological disorders. The significant unmet medical need for treatment of CNS disorders has increased the interest for these types of compounds. In this review, we highlight recent progress in the clinical development of NAS drug candidates, in addition to preclinical breakthroughs in the identification of novel NASs, mainly for GABAA and NMDA receptor modulation.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Discovery , Neurotransmitter Agents/pharmacology , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Central Nervous System Diseases/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Conformation , Neurotransmitter Agents/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 60(18): 7810-7819, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28753313

ABSTRACT

Certain classes of neuroactive steroids (NASs) are positive allosteric modulators (PAM) of synaptic and extrasynaptic GABAA receptors. Herein, we report new SAR insights in a series of 5ß-nor-19-pregnan-20-one analogues bearing substituted pyrazoles and triazoles at C-21, culminating in the discovery of 3α-hydroxy-3ß-methyl-21-(4-cyano-1H-pyrazol-1'-yl)-19-nor-5ß-pregnan-20-one (SAGE-217, 3), a potent GABAA receptor modulator at both synaptic and extrasynaptic receptor subtypes, with excellent oral DMPK properties. Compound 3 has completed a phase 1 single ascending dose (SAD) and multiple ascending dose (MAD) clinical trial and is currently being studied in parallel phase 2 clinical trials for the treatment of postpartum depression (PPD), major depressive disorder (MDD), and essential tremor (ET).


Subject(s)
Allosteric Regulation/drug effects , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacology , Pregnanolone/analogs & derivatives , Receptors, GABA-A/metabolism , Animals , Depression, Postpartum/drug therapy , Depressive Disorder, Major/drug therapy , Female , GABA-A Receptor Agonists/pharmacokinetics , Mice , Pregnanolone/chemistry , Pregnanolone/pharmacokinetics , Pregnanolone/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats
5.
J Med Chem ; 58(8): 3500-11, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25799373

ABSTRACT

Neuroactive steroids (NASs) have been shown to impact central nervous system (CNS) function through positive allosteric modulation of the GABA(A) receptor (GABA(A)-R). Herein we report the effects on the activity and pharmacokinetic properties of a series of nor-19 pregnanolone analogues bearing a heterocyclic substituent at C-21. These efforts resulted in the identification of SGE-516, a balanced synaptic/extrasynaptic GABA(A) receptor modulator, and SGE-872, a selective extrasynaptic GABA(A) receptor modulator. Both molecules possess excellent druglike properties, making them advanced leads for oral delivery of GABA(A) receptor modulators.


Subject(s)
Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Pregnanolone/analogs & derivatives , Pregnanolone/pharmacology , Receptors, GABA/metabolism , Allosteric Regulation/drug effects , Animals , Humans , Mice , Neurotransmitter Agents/pharmacokinetics , Pregnanolone/pharmacokinetics , Rats , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 22(18): 5876-84, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22902656

ABSTRACT

The identification of highly potent and orally active triazines for the inhibition of PDE10A is reported. The new analogs exhibit low-nanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired drug-like properties. Employing structure-based drug design approaches, we investigated the selectivity of PDE10A inhibitors against other known PDE isoforms, by methodically exploring the various sub-regions of the PDE10A ligand binding pocket. A systematic assessment of the ADME and pharmacokinetic properties of the newly synthesized compounds has led to the design of drug-like candidates with good brain permeability and desirable drug kinetics (t(1/2), bioavailability, clearance). Compound 66 was highly potent for PDE10A (IC(50)=1.4 nM), demonstrated high selectivity (>200×) for the other PDEs, and was efficacious in animal models of psychoses; reversal of MK-801 induced hyperactivity (MED=0.1mg/kg) and conditioned avoidance responding (CAR; ID(50)=0.2 mg/kg).


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Triazines/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Dizocilpine Maleate/antagonists & inhibitors , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Humans , Hyperkinesis/chemically induced , Hyperkinesis/drug therapy , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/chemistry , Rats , Structure-Activity Relationship , Triazines/administration & dosage , Triazines/chemistry
7.
J Med Chem ; 54(21): 7621-38, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21988093

ABSTRACT

The identification of highly potent and orally active phenylpyrazines for the inhibition of PDE10A is reported. The new analogues exhibit subnanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired druglike properties. Employing structure-based drug design approaches, we methodically explored two key regions of the binding pocket of the PDE10A enzyme to alter the planarity of the parent compound 1 and optimize its affinity for PDE10A. Bulky substituents at the C9 position led to elimination of the mutagenicity of 1, while a crucial hydrogen bond interaction with Glu716 markedly enhanced its potency and selectivity. A systematic assessment of the ADME and PK properties of the new analogues led to druglike development candidates. One of the more potent compounds, 96, displayed an IC(50) for PDE10A of 0.7 nM and was active in predictive antipsychotic animal models.


Subject(s)
Antipsychotic Agents/chemical synthesis , Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Pyrazines/chemical synthesis , Administration, Oral , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Binding Sites , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Dogs , Female , Humans , Hydrolysis , Hyperkinesis/drug therapy , In Vitro Techniques , Isoenzymes/chemistry , Isoenzymes/metabolism , Ligands , Male , Mice , Microsomes/metabolism , Models, Molecular , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/chemistry , Protein Conformation , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Recombinant Proteins/chemistry , Stereoisomerism , Stereotyped Behavior/drug effects , Structure-Activity Relationship
8.
J Med Chem ; 53(10): 4066-84, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20443629

ABSTRACT

As part of an effort to identify 5-HT(1A) antagonists that did not possess typical arylalkylamine or keto/amido-alkyl aryl piperazine scaffolds, prototype compound 10a was identified from earlier work in a combined 5-HT(1A) antagonist/SSRI program. This quinolyl-piperazinyl piperidine analogue displayed potent, selective 5-HT(1A) antagonism but suffered from poor oxidative metabolic stability, resulting in low exposure following oral administration. SAR studies, driven primarily by in vitro liver microsomal stability assessment, identified compound 10b, which displayed improved oral bioavailability and lower intrinsic clearance. Further changes to the scaffold (e.g., 10r) resulted in a loss in potency. Compound 10b displayed cognitive enhancing effects in a number of animal models of learning and memory, enhanced the antidepressant-like effects of the SSRI fluoxetine, and reversed the sexual dysfunction induced by chronic fluoxetine treatment.


Subject(s)
Piperazines/chemical synthesis , Piperidines/chemical synthesis , Quinolines/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Acetylcholine/metabolism , Administration, Oral , Amyloid beta-Protein Precursor/genetics , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Biological Availability , CHO Cells , Cerebral Cortex/metabolism , Cognition/drug effects , Cricetinae , Cricetulus , Fluoxetine/pharmacology , Hippocampus/metabolism , In Vitro Techniques , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Transgenic , Microsomes, Liver/metabolism , Nootropic Agents/chemical synthesis , Nootropic Agents/chemistry , Nootropic Agents/pharmacology , Penile Erection/drug effects , Piperazines/chemistry , Piperazines/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Rats , Serotonin/metabolism , Structure-Activity Relationship
9.
J Med Chem ; 53(11): 4399-411, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20450197

ABSTRACT

Novel imidazo[1,5-a]pyrido[3,2-e]pyrazines have been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. For in vitro characterization, inhibition of PDE10A mediated cAMP hydrolysis was used and a QSAR model was established to analyze substitution effects. The outcome of this analysis was complemented by the crystal structure of PDE10A in complex with compound 49. Qualitatively new interactions between inhibitor and binding site were found, contrasting with previously published crystal structures of papaverine-like inhibitors. In accordance with the known antipsychotic potential of PDE10A inhibitors, MK-801 induced stereotypy and hyperactivity in rats were reversed by selected compounds. Thus, a promising compound class has been identified for the treatment of schizophrenia that could circumvent side effects connected with current therapies.


Subject(s)
Drug Discovery/methods , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Pyrazines/chemistry , Pyrazines/pharmacology , Animals , Female , Humans , Models, Molecular , Phosphoric Diester Hydrolases/chemistry , Protein Conformation , Quantitative Structure-Activity Relationship , Rats , Rats, Wistar
10.
Bioorg Med Chem Lett ; 20(5): 1657-60, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20138763

ABSTRACT

Novel 3-(arylsulfonyl)-1-(azacyclyl)-1H-indoles 6 were synthesized as potential 5-HT(6) receptor ligands, based on constraining a basic side chain as either a piperidine or a pyrrolidine. Many of these compounds had good 5-HT(6) binding affinity with K(i) values <10nM. Depending on substitution, both agonists (e.g., 6o: EC(50)=60nM, E(max)=70%) and antagonists (6y: IC(50)=17 nM, I(max)=86%) were identified in a 5-HT(6) adenylyl cyclase assay.


Subject(s)
Indoles/chemistry , Receptors, Serotonin/chemistry , Serotonin Antagonists/chemistry , Serotonin Receptor Agonists/chemistry , Sulfones/chemistry , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Ligands , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/chemical synthesis , Serotonin Receptor Agonists/pharmacology , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacology
11.
Bioorg Med Chem Lett ; 20(3): 824-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20064720

ABSTRACT

Several benzofuran derivatives linked to a 3-indoletetrahydropyridine through an alkyl chain were prepared and evaluated for serotonin transporter and 5-HT(1A) receptor affinities. Their design, synthesis and structure-activity relationships are described.


Subject(s)
Benzofurans/chemistry , Benzofurans/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Protein Binding/physiology , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 19(24): 6935-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19884004

ABSTRACT

1-(2-Aminoethyl)-3-(arylsulfonyl)-1H-pyrrolopyridines were prepared. Binding assays indicated they are 5-HT(6) receptor ligands, among which 6f and 6g showed high affinity for 5-HT(6) receptors with K(i)=3.9 and 1.7 nM, respectively.


Subject(s)
Pyridines/pharmacology , Pyrroles/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , HeLa Cells , Humans , Ligands , Pyridines/chemistry , Pyrroles/chemistry , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemistry , Serotonin Receptor Agonists/chemistry
14.
Bioorg Med Chem ; 17(22): 7755-68, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19836248

ABSTRACT

Cysteine-dependant aspartyl protease (caspase) activation has been implicated as a part of the signal transduction pathway leading to apoptosis. It has been postulated that caspase-3 inhibition could attenuate cell damage after an ischemic event and thereby providing for a novel neuroprotective treatment for stroke. As part of a program to develop a small molecule inhibitor of caspase-3, a novel series of 3,4-dihydropyrimido(1,2-a)indol-10(2H)-ones (pyrimidoindolones) was identified. The synthesis, biological evaluation and structure-activity relationships of the pyrimidoindolones are described.


Subject(s)
Caspase Inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line , Escherichia coli , Protease Inhibitors/chemical synthesis , Pyrimidinones/chemical synthesis , Stroke/metabolism , Stroke/pathology , Structure-Activity Relationship
15.
J Med Chem ; 52(15): 4955-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19719241

ABSTRACT

On the basis of the previously reported clinical candidate, SSA-426 (1), a series of related 2-piperazin-1-ylquinoline derivatives 3-16 were synthesized and evaluated as dual-acting serotonin (5-HT) reuptake inhibitors and 5-HT1A receptor antagonists. In particular, compound 7 exhibits potent functional activities at both the 5-HT transporter and 5-HT1A receptor, good selectivity over the alpha1-adrenergic and dopaminergic receptors, acceptable pharmacokinetic properties, and a favorable in vivo profile.


Subject(s)
Piperazines/chemical synthesis , Quinolines/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Serotonin Antagonists/chemical synthesis , Animals , Antidepressive Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme Inhibitors , Humans , Microdialysis , Piperazines/pharmacology , Quinolines/pharmacology , Rats , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Dopamine/metabolism , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
16.
Bioorg Med Chem ; 17(14): 5153-63, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19523834

ABSTRACT

A series of 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines 10a-z was prepared as novel 5-HT(6) ligands. The best compounds were high affinity, full agonists at 5-HT(6) receptors. Several agonists demonstrated good selectivity over other serotonergic and dopaminergic receptors. Acute administration of selective agonist 10e significantly increased extracellular GABA concentrations in rat frontal cortex. This compound also reduced adjunctive drinking behavior in the rat schedule-induced polydipsia assay, possibly predictive of efficacy in obsessive compulsive disorder and other anxiety related disorders.


Subject(s)
Cerebral Cortex/drug effects , Drinking Behavior/drug effects , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/pharmacology , Animals , Cerebral Cortex/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , HeLa Cells , Humans , Protein Binding , Rats , Serotonin Receptor Agonists/administration & dosage , Serotonin Receptor Agonists/chemical synthesis , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism
17.
Bioorg Med Chem ; 17(13): 4708-17, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19443228

ABSTRACT

gamma-Secretase inhibitors have been shown to reduce the production of beta-amyloid, a component of the plaques that are found in brains of patients with Alzheimer's disease. A novel series of heterocyclic sulfonamide gamma-secretase inhibitors that reduce beta-amyloid levels in cells is reported. Several examples of compounds within this series demonstrate a higher propensity to inhibit the processing of amyloid precursor protein compared to Notch, an alternative gamma-secretase substrate.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Heterocyclic Compounds/chemical synthesis , Humans , Molecular Structure , Protein Binding , Receptors, Notch/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis
18.
Bioorg Med Chem Lett ; 19(3): 926-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19097890

ABSTRACT

Accumulation of beta-amyloid (Abeta), produced by the proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase, is widely believed to be associated with Alzheimer's disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) gamma-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol 7.b.2 (Abeta(40/42) EC(50)=28 nM), which is efficacious in reduction of Abeta production in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Isoleucine/analogs & derivatives , Receptor, Notch1/metabolism , Alcohols , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Drug Design , Humans , Isoleucine/chemistry , Models, Chemical , Propanolamines/chemistry , Sulfonamides/chemistry
19.
J Med Chem ; 51(21): 6980-7004, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18834188

ABSTRACT

Novel compounds combining a 5-HT 1A moiety (3-aminochroman scaffold) and a 5-HT transporter (indole analogues) linked through a common basic nitrogen via an alkyl chain attached at the 1- or 3-position of the indole were evaluated for dual affinity at both the 5-HT reuptake site and the 5-HT 1A receptor. Compounds of most interest were found to have a 5-carbamoyl-8-fluoro-3-amino-3,4-dihydro-2 H-1-benzopyran linked to a 3-alkylindole (straight chain), more specifically substituted with a 5-fluoro (( R)-(-)- 35c), 5-cyano ((-)- 52a), or 5,7-difluoro ((-)- 52g). Several factors contributed to 5-HT 1A affinity, serotonin rat transporter affinity, and functional antagonism in vitro. Although most of our analogues showed good to excellent affinities at both targets, specific features such as cyclobutyl substitution on the basic nitrogen and stereochemistry at the 3-position of the chroman moiety seemed necessary for antagonism at the 5-HT 1A receptor. Branched linkers seemed to impart antagonism even as racemates; however, the potency of these analogues in the functional assay was not desirable enough to further pursue these compounds.


Subject(s)
Antidepressive Agents/chemical synthesis , Antidepressive Agents/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Antidepressive Agents/chemistry , Benzopyrans/chemistry , Cell Line , Cricetinae , Cross-Linking Reagents/chemistry , Humans , Molecular Structure , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
20.
Bioorg Med Chem ; 16(14): 6707-23, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18571421

ABSTRACT

Based on the previously reported discovery lead, 3-(cis-4-(4-(1H-indol-4-yl)piperazin-1-yl)cyclohexyl)-5-fluoro-1H-indole (2), a series of related arylpiperazin-4-yl-cyclohexyl indole analogs were synthesized then evaluated as 5-HT transporter inhibitors and 5-HT(1A) receptor antagonists. The investigation of the structure-activity relationships revealed the optimal pharmacophoric elements required for activities in this series. The best example from this study, 5-(piperazin-1-yl)quinoline analog (trans-20), exhibited equal binding affinities at 5-HT transporter (K(i)=4.9nM), 5-HT(1A) receptor (K(i)=6.2nM) and functioned as a 5-HT(1A) receptor antagonist.


Subject(s)
Antidepressive Agents/chemistry , Indoles/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Cyclohexylamines , Humans , Indoles/metabolism , Indoles/pharmacology , Piperazines , Serotonin 5-HT1 Receptor Antagonists , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...