Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Soc Trans ; 48(4): 1297-1308, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32820799

ABSTRACT

Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved 'core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.


Subject(s)
Cell Polarity , Drosophila Proteins/metabolism , Subcellular Fractions/metabolism , Animals , Drosophila melanogaster , Phosphorylation , Ubiquitination
2.
Cell Rep ; 22(2): 557-567, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320748

ABSTRACT

Signaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs) are clustered with their molecular partners. Localization microscopy has been crucial to visualizing these nanodomains but has been limited by brightness of markers, restricting the resolution and quantification of individual proteins clustered within. Harnessing the remarkable localization precision of DNA-PAINT (<10 nm), we visualized punctate labeling within these nanodomains, confirmed as single RyRs. RyR positions within sub-plasmalemmal nanodomains revealed how they are organized randomly into irregular clustering patterns leaving significant gaps occupied by accessory or regulatory proteins. RyR-inhibiting protein junctophilin-2 appeared highly concentrated adjacent to RyR channels. Analyzing these molecular maps showed significant variations in the co-clustering stoichiometry between junctophilin-2 and RyR, even between nearby nanodomains. This constitutes an additional level of complexity in RyR arrangement and regulation of calcium signaling, intrinsically built into the nanodomains.


Subject(s)
Calcium Signaling/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Cluster Analysis , Humans
3.
Cell Rep ; 21(9): 2348-2356, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186674

ABSTRACT

The neuromuscular junction (NMJ) plays a fundamental role in transferring information from lower motor neuron to skeletal muscle to generate movement. It is also an experimentally accessible model synapse routinely studied in animal models to explore fundamental aspects of synaptic form and function. Here, we combined morphological techniques, super-resolution imaging, and proteomic profiling to reveal the detailed cellular and molecular architecture of the human NMJ. Human NMJs were significantly smaller, less complex, and more fragmented than mouse NMJs. In contrast to mice, human NMJs were also remarkably stable across the entire adult lifespan, showing no signs of age-related degeneration or remodeling. Super-resolution imaging and proteomic profiling revealed distinctive distribution of active zone proteins and differential expression of core synaptic proteins and molecular pathways at the human NMJ. Taken together, these findings reveal human-specific cellular and molecular features of the NMJ that distinguish them from comparable synapses in other mammalian species.


Subject(s)
Neuromuscular Junction/anatomy & histology , Neuromuscular Junction/cytology , Aging/physiology , Animals , Humans , Motor Neurons/metabolism , Muscle, Skeletal/metabolism , Nervous System/metabolism , Neuromuscular Junction/metabolism , Proteomics , Synapses/metabolism , Synaptic Transmission/physiology
4.
Cell Transplant ; 25(4): 665-75, 2016.
Article in English | MEDLINE | ID: mdl-26727032

ABSTRACT

Huntington's disease (HD) is a debilitating, genetically inherited neurodegenerative disorder that results in early loss of medium spiny neurons from the striatum and subsequent degeneration of cortical and other subcortical brain regions. Behavioral changes manifest as a range of motor, cognitive, and neuropsychiatric impairments. It has been established that replacement of the degenerated medium spiny neurons with rat-derived fetal whole ganglionic eminence (rWGE) tissue can alleviate motor and cognitive deficits in preclinical rodent models of HD. However, clinical application of this cell replacement therapy requires the use of human-derived (hWGE), not rWGE, tissue. Despite this, little is currently known about the functional efficacy of hWGE. The aim of this study was to directly compare the ability of the gold standard rWGE grafts, against the clinically relevant hWGE grafts, on a range of behavioral tests of motor function. Lister hooded rats either remained as unoperated controls or received unilateral excitotoxic lesions of the lateral neostriatum. Subsets of lesioned rats then received transplants of either rWGE or hWGE primary fetal tissue into the lateral striatum. All rats were tested postlesion and postgraft on the following tests of motor function: staircase test, apomorphine-induced rotation, cylinder test, adjusting steps test, and vibrissae-evoked touch test. At 21 weeks postgraft, brain tissue was taken for histological analysis. The results revealed comparable improvements in apomorphine-induced rotational bias and the vibrissae test, despite larger graft volumes in the hWGE cohort. hWGE grafts, but not rWGE grafts, stabilized behavioral performance on the adjusting steps test. These results have implications for clinical application of cell replacement therapies, as well as providing a foundation for the development of stem cell-derived cell therapy products.


Subject(s)
Behavior, Animal , Fetal Tissue Transplantation , Fetus , Huntington Disease , Median Eminence/transplantation , Motor Activity , Animals , Heterografts , Humans , Huntington Disease/physiopathology , Huntington Disease/surgery , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...