Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(4): e38066, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37234140

ABSTRACT

Background Cone-beam computed tomography (CBCT) imaging offers high-quality three-dimensional (3D) acquisition with great spatial resolution, given by the use of isometric voxels, when compared with conventional computed tomography (CT). The current literature supports a median reduction of 76% (up to 85% reduction) of patients' radiation exposure when imaged by CBCT versus CT. Clinical applications of CBCT imaging can benefit both medical and dental professions. Because these images are digital, the use of algorithms can facilitate the diagnosis of pathologies and the management of patients. There is pertinence to developing rapid and efficient segmentation of teeth from facial volumes acquired with CBCT. Methodology In this paper, a segmentation algorithm using heuristics based on pulp and teeth anatomy as a pre-personalized model is proposed for both single and multi-rooted teeth. Results A quantitative analysis was performed by comparing the results of the algorithm to a gold standard obtained from manual segmentation using the Dice index, average surface distance (ASD), and Mahalanobis distance (MHD) metrics. Qualitative analysis was also performed between the algorithm and the gold standard of 78 teeth. The Dice index average for all pulp segmentation (n = 78) was 83.82% (SD = 6.54%). ASD for all pulp segmentation (n = 78) was 0.21 mm (SD = 0.34 mm). Pulp segmentation compared with MHD averages was 0.19 mm (SD = 0.21 mm). The results of teeth segmentation metrics were similar to pulp segmentation metrics. For the total teeth (n = 78) included in this study, the Dice index average was 92% (SD = 13.10%), ASD was low at 0.19 mm (SD = 0.15 mm), and MHD was 0.11 mm (SD = 0.09 mm). Despite good quantitative results, the qualitative analysis yielded fair results due to large categories. When compared with existing automatic segmentation methods, our approach enables an effective segmentation for both pulp and teeth. Conclusions Our proposed algorithm for pulp and teeth segmentation yields results that are comparable to those obtained by the state-of-the-art methods in both quantitative and qualitative analysis, thus offering interesting perspectives in many clinical fields of dentistry.

2.
Phys Chem Chem Phys ; 18(29): 19637-46, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27381258

ABSTRACT

Understanding the interactions of a pure iron surface with biological elements, such as ions and proteins in an aqueous medium, is essential for an accurate in vitro assessment of corrosion patterns. In fact, the synergy of chlorides, carbonates, phosphates and complex organic molecules present in the body environment is a key factor affecting both in vivo and in vitro degradation of materials, especially iron and its alloys. The aim of this work was the assessment of degradation patterns of pure iron in 5 commercial pseudo-physiological solutions by a thorough study of degraded surface chemistry and morphology. It also provides a methodological basis to understand the short-term degradation mechanism of degradable iron depending on the surrounding physiological media. The standard static immersion corrosion test was modified to adapt the procedure to pseudo-physiological solutions. After a 14-day static immersion test, the surfaces of samples were investigated by scanning electron microscopy, stylus profilometry and atomic force microscopy techniques. The chemistry and phase composition of the degraded layers were evaluated, respectively, by X-ray photoelectron spectrometry and X-ray diffractometry. The morphology and composition of the degradation layers were found to be different for the test-solutions: for phosphate-rich solutions, the formation of an adherent passive layer was found; degradation mechanisms related to general corrosion were predominant for all the other solutions. In conclusion, the chemical composition of the used medium plays a fundamental role in the degradation pattern of pure iron, so that direct comparisons of solutions with different ion concentrations, as reported in the literature, need to be carefully assessed.

SELECTION OF CITATIONS
SEARCH DETAIL
...