Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(7): e0254796, 2021.
Article in English | MEDLINE | ID: mdl-34297729

ABSTRACT

Daptomycin is a cyclic lipopeptide antibiotic used in the clinic for treatment of severe enterococcal infections. Recent reports indicate that daptomycin targets active cellular processes, specifically, peptidoglycan biosynthesis. Within, we examined the efficacy of daptomycin against Enterococcus faecalis under a range of environmental growth conditions including inhibitors that target active cellular processes. Daptomycin was far less effective against cells in late stationary phase compared to cells in exponential phase, and this was independent of cellular ATP levels. Further, the addition of either the de novo protein synthesis inhibitor chloramphenicol or the fatty acid biosynthesis inhibitor cerulenin induced survival against daptomycin far better than controls. Alterations in metabolites associated with peptidoglycan synthesis correlated with protection against daptomycin. This was further supported as removal of peptidoglycan induced physiological daptomycin tolerance, a synergistic relation between daptomycin and fosfomycin, an inhibitor of the fist committed step peptidoglycan synthesis, was observed, as well as an additive effect when daptomycin was combined with ampicillin, which targets crosslinking of peptidoglycan strands. Removal of the peptidoglycan of Enterococcus faecium, Staphylococcus aureus, and Bacillus subtilis also resulted in significant protection against daptomycin in comparison to whole cells with intact cell walls. Based on these observations, we conclude that bacterial growth phase and metabolic activity, as well as the presence/absence of peptidoglycan are major contributors to the efficacy of daptomycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial , Enterococcus faecalis/drug effects , Fosfomycin/pharmacology , Peptidoglycan/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Drug Synergism , Enterococcus faecalis/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
2.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801181

ABSTRACT

Enterococcus faecalis is a Gram-positive bacterium that normally exists as an intestinal commensal in humans but is also a leading cause of nosocomial infections. Previous work noted that growth supplementation with serum induced tolerance to membrane-damaging agents, including the antibiotic daptomycin. Specific fatty acids found within serum could independently provide tolerance to daptomycin (protective fatty acids), yet some fatty acids found in serum did not and had negative effects on enterococcal physiology (nonprotective fatty acids). Here, we measured a wide array of physiological responses after supplementation with combinations of protective and nonprotective fatty acids to better understand how serum induces daptomycin tolerance. When cells were supplemented with either nonprotective fatty acid, palmitic acid, or stearic acid, there were marked defects in growth and morphology, but these defects were rescued upon supplementation with either protective fatty acid, oleic acid, or linoleic acid. Membrane fluidity decreased with growth in either palmitic or stearic acid alone but returned to basal levels when a protective fatty acid was supplied. Daptomycin tolerance could be induced if a protective fatty acid was provided with a nonprotective fatty acid, and some specific combinations protected as well as serum supplementation. While cell envelope charge has been associated with tolerance to daptomycin in other Gram-positive bacteria, we concluded that it does not correlate with the fatty acid-induced protection we observed. Based on these observations, we conclude that daptomycin tolerance by serum is driven by specific, protective fatty acids found within the fluid.IMPORTANCE With an increasing prevalence of antibiotic resistance in the clinic, we strive to understand more about microbial defensive mechanisms. A nongenetic tolerance to the antibiotic daptomycin was discovered in Enterococcus faecalis that results in the increased survival of bacterial populations after treatment with the drug. This tolerance mechanism likely synergizes with antibiotic resistance in the clinic. Given that this tolerance phenotype is induced by incorporation of fatty acids present in the host, it can be assumed that infections by this organism require a higher dose of antibiotic for successful eradication. The mixture of fatty acids in human fluids is quite diverse, with little understanding between the interplay of fatty acid combinations and the tolerance phenotype we observe. It is crucial to understand the effects of fatty acid combinations on E. faecalis physiology if we are to suppress the tolerance physiology in the clinic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial , Enterococcus faecalis/physiology , Linoleic Acid/metabolism , Oleic Acid/metabolism , Cell Membrane/physiology , Enterococcus faecalis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...