Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(1): e14348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38288869

ABSTRACT

Sourcing seed from local populations has been the long-standing default for native restoration plantings for numerous eco-evolutionary reasons. However, rapidly changing environments are revealing risks associated with both non-local and local provenancing. As alternative strategies gain interest, we argue to progress seed sourcing discussions towards developing risk-based decision-making that weighs the risks of changing and not changing in a changing environment, transcending historic default positions and local versus non-local debates.


Subject(s)
Biological Evolution , Seeds
2.
Plants (Basel) ; 11(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35890479

ABSTRACT

With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate-trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate-trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.

3.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210381, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35757881

ABSTRACT

Harnessing new technologies is vital to achieve global imperatives to restore degraded ecosystems. We explored the potential of genomics as one such tool. We aimed to understand barriers hindering the uptake of genomics, and how to overcome them, via exploratory interviews with leading scholars in both restoration and its sister discipline of conservation-a discipline that has successfully leveraged genomics. We also conducted an examination of research trends to explore some insights that emerged from the interviews, including publication trends that have used genomics to address restoration and conservation questions. Our qualitative findings revealed varied perspectives on harnessing genomics. For example, scholars in restoration without genomics experience felt genomics was over-hyped. Scholars with genomics experience emphatically emphasized the need to proceed cautiously in using genomics in restoration. Both genomics-experienced and less-experienced scholars called for case studies to demonstrate the benefits of genomics in restoration. These qualitative data contrasted with our examination of research trends, which revealed 70 restoration genomics studies, particularly studies using environmental DNA as a monitoring tool. We provide a roadmap to facilitate the uptake of genomics into restoration, to help the restoration sector meet the monumental task of restoring huge areas to biodiverse and functional ecosystems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Ecology , Genomics , Horses
4.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
6.
Mol Ecol Resour ; 21(5): 1460-1474, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33565725

ABSTRACT

Genotype-environment association (GEA) methods have become part of the standard landscape genomics toolkit, yet, we know little about how to best filter genotype-by-sequencing data to provide robust inferences for environmental adaptation. In many cases, default filtering thresholds for minor allele frequency and missing data are applied regardless of sample size, having unknown impacts on the results, negatively affecting management strategies. Here, we investigate the effects of filtering on GEA results and the potential implications for assessment of adaptation to environment. We use empirical and simulated data sets derived from two widespread tree species to assess the effects of filtering on GEA outputs. Critically, we find that the level of filtering of missing data and minor allele frequency affect the identification of true positives. Even slight adjustments to these thresholds can change the rate of true positive detection. Using conservative thresholds for missing data and minor allele frequency substantially reduces the size of the data set, lessening the power to detect adaptive variants (i.e., simulated true positives) with strong and weak strengths of selection. Regardless, strength of selection was a good predictor for GEA detection, but even some SNPs under strong selection went undetected. False positive rates varied depending on the species and GEA method, and filtering significantly impacted the predictions of adaptive capacity in downstream analyses. We make several recommendations regarding filtering for GEA methods. Ultimately, there is no filtering panacea, but some choices are better than others, depending on the study system, availability of genomic resources, and desired objectives.


Subject(s)
Gene-Environment Interaction , Genomics , Genotype , Gene Frequency , Genome , Polymorphism, Single Nucleotide
7.
Genes (Basel) ; 11(9)2020 09 18.
Article in English | MEDLINE | ID: mdl-32962131

ABSTRACT

The evolutionary response to selection depends on the distribution of genetic variation in traits under selection within populations, as defined by the additive genetic variance-covariance matrix (G). The structure and evolutionary stability of G will thus influence the course of phenotypic evolution. However, there are few studies assessing the stability of G and its relationship with population divergence within foundation tree species. We compared the G-matrices of Mainland and Island population groups of the forest tree Eucalyptus globulus, and determined the extent to which population divergence aligned with within-population genetic (co)variation. Four key wood property traits exhibiting signals of divergent selection were studied-wood density, extractive content, and lignin content and composition. The comparison of G-matrices of the mainland and island populations indicated that the G-eigenstructure was relatively well preserved at an intra-specific level. Population divergence tended to occur along a major direction of genetic variation in G. The observed conservatism of G, the moderate evolutionary timescale, and close relationship between genetic architecture and population trajectories suggest that genetic constraints may have influenced the evolution and diversification of the E. globulus populations for the traits studied. However, alternative scenarios, including selection aligning genetic architecture and population divergence, are discussed.


Subject(s)
Biological Evolution , Environment , Eucalyptus/genetics , Genetic Variation , Genetics, Population , Selection, Genetic , Trees/genetics , Eucalyptus/classification , Genetic Speciation , Phenotype , Trees/classification
8.
Plant Cell Environ ; 43(1): 103-115, 2020 01.
Article in English | MEDLINE | ID: mdl-31472076

ABSTRACT

Drought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F2 mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F3 progeny. Progenies were grown in a glasshouse in a randomized complete block design. A subset of seedlings was subjected to a drought treatment after which they were rewatered and scored for damage and growth postdrought. Nondroughted seedlings were assessed for growth traits as well as lignotuber size and resprouting following severe damage to the main stem. QTL were detected for most traits. Importantly, independent QTL were detected for (a) drought damage and plant size, (b) drought damage and growth recovery, and (c) lignotuber size and resprouting capacity. Such independence argues that trade-offs are unlikely to be a major limitation to the response to selection and at the early life history stage studied; there are opportunities to improve resilience to drought without adverse effects on productivity.


Subject(s)
Droughts , Eucalyptus/physiology , Gene Expression Regulation , Plant Leaves/physiology , Seedlings/physiology , Chromosome Mapping , Chromosomes, Plant , Phenotype , Pollination , Quantitative Trait Loci , Trees/physiology
9.
Nat Rev Genet ; 20(10): 615-628, 2019 10.
Article in English | MEDLINE | ID: mdl-31300751

ABSTRACT

Billions of hectares of natural ecosystems have been degraded through human actions. The global community has agreed on targets to halt and reverse these declines, and the restoration sector faces the important but arduous task of implementing programmes to meet these objectives. Existing and emerging genomics tools offer the potential to improve the odds of achieving these targets. These tools include population genomics that can improve seed sourcing, meta-omics that can improve assessment and monitoring of restoration outcomes, and genome editing that can generate novel genotypes for restoring challenging environments. We identify barriers to adopting these tools in a restoration context and emphasize that regulatory and ethical frameworks are required to guide their use.


Subject(s)
Conservation of Natural Resources/methods , Genomics/methods , Animals , Biodiversity , Ecosystem , Humans
10.
Ann Bot ; 122(1): 181-194, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29788049

ABSTRACT

Background and Aims: Evolutionary change in developmental trajectories (heterochrony) is a major mechanism of adaptation in plants and animals. However, there are few detailed studies of the variation in the timing of developmental events among wild populations. We here aimed to identify the climatic drivers and measure selection shaping a genetic-based developmental cline among populations of an endemic tree species complex on the island of Tasmania. Methods: Seed lots from 38 native provenances encompassing the clinal transition from the heteroblastic Eucalyptus tenuiramis to the homoblastic Eucalyptus risdonii were grown in a common-garden field trial in southern Tasmania for 20 years. We used 27 climatic variables to model the provenance variation in vegetative juvenility as assessed at age 5 years. A phenotypic selection analysis was used to measure the fitness consequences of variation in vegetative juvenility based on its impact on the survival and reproductive capacity of survivors at age 20 years. Key Results: Significant provenance divergence in vegetative juvenility was shown to be associated with home-site aridity, with the retention of juvenile foliage increasing with increasing aridity. Our results indicated that climate change may lead to different directions of selection across the geographic range of the complex, and in our mesic field site demonstrated that total directional selection within phenotypically variable provenances was in favour of reduced vegetative juvenility. Conclusions: We provide evidence that heteroblasty is adaptive and argue that, in assessing the impacts of rapid global change, developmental plasticity and heterochrony are underappreciated processes which can contribute to populations of long-lived organisms, such as trees, persisting and ultimately adapting to environmental change.


Subject(s)
Biological Evolution , Eucalyptus/genetics , Adaptation, Physiological , Climate Change , Eucalyptus/physiology , Forests , Phenotype , Seeds/genetics , Seeds/physiology , Tasmania , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...