Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37737698

ABSTRACT

Measurement of the emission current at a high voltage is necessary in monitoring ion production from a corona source, to provide independent confirmation of operation. The wide common mode range required is usually obtained through an isolated system, which requires isolated power to operate, adding complexity and volume. Passing the current through a light-emitting diode (LED) provides an alternative measurement method as the LED's brightness can be used to signal the current's magnitude. The forward voltage loss across the LED is negligible compared with the emitter voltage. Selection of a discrete LED for this task rather than using one within a standard integrated optocoupler package improves the low current sensitivity by two orders of magnitude. A high efficiency discrete infrared LED-photodiode pair is demonstrated to provide measurements of corona currents between 0.2 and 20 µA using a second LED-photodiode pair for analog linearity compensation. The inherent simplicity is well suited to new applications of ion emission in propulsion and weather modification.

2.
iScience ; 25(11): 105241, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36439985

ABSTRACT

The atmosphere hosts multiple sources of electric charge that influence critical processes such as the aggregation of droplets and the removal of dust and aerosols. This is evident in the variability of the atmospheric electric field. Whereas these electric fields are known to respond to physical and geological processes, the effect of biotic sources of charge has not hitherto been considered. Here, we combine theoretical and empirical evidence to demonstrate that honeybee swarms directly contribute to atmospheric electricity, in proportion to the swarm density. We provide a quantitative assessment of this finding, by comparing the electrical contribution of various swarming insect species with common abiotic sources of charge. This reveals that the charge contribution of some insect swarms will be comparable with that of meteorologically induced variations. The observed transport of charge by insects therefore demonstrates an unexplored role of biogenic space charge for physical and ecological processes in the atmosphere.

3.
Int J Biometeorol ; 65(1): 45-58, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32666310

ABSTRACT

The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.


Subject(s)
Ecosystem , Electricity , Atmosphere
4.
Proc Math Phys Eng Sci ; 476(2238): 20190758, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32821235

ABSTRACT

A fair-weather electric field has been observed near the Earth's surface for over two centuries. The field is sustained by charge generation in distant disturbed weather regions, through current flow in the global electric circuit. Conventionally, the fair-weather part of the global circuit has disregarded clouds, but extensive layer clouds, important to climate, are widespread globally. Such clouds are not electrically inert, becoming charged at their upper and lower horizontal boundaries from vertical current flow, in a new electrical regime-neither fair nor disturbed weather; hence it is described here as semi-fair weather. Calculations and measurements show the upper cloud boundary charge is usually positive, the cloud interior positive and the lower cloud boundary negative, with the upper charge density larger, but of the same magnitude (∼nC m-2) as cloud base. Globally, the total positive charge stored by layer clouds is approximately 105 C, which, combined with the positive charge in the atmospheric column above the cloud up to the ionosphere, balances the total negative surface charge of the fair-weather regions. Extensive layer clouds are, therefore, an intrinsic aspect of the global circuit, and the resulting natural charging of their cloud droplets is a fundamental atmospheric feature.

5.
Phys Rev Lett ; 124(19): 198701, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469542

ABSTRACT

Rainfall is hypothesized to be influenced by droplet charge, which is related to the global circuit current flowing through clouds. This is tested through examining a major global circuit current increase following the release of artificial radioactivity. Significant changes occurred in daily rainfall distribution in the Shetland Islands, away from pollution. Daily rainfall changed by 24%, and local clouds optically thickened, within the nuclear weapons test period. This supports expectations of electrically induced microphysical changes in liquid water clouds from additional ionization.

6.
Front Physiol ; 10: 378, 2019.
Article in English | MEDLINE | ID: mdl-31040789

ABSTRACT

The Earth's subsurface represents a complex electrochemical environment that contains many electro-active chemical compounds that are relevant for a wide array of biologically driven ecosystem processes. Concentrations of many of these electro-active compounds within Earth's subsurface environments fluctuate during the day and over seasons. This has been observed for surface waters, sediments and continental soils. This variability can affect particularly small, relatively immobile organisms living in these environments. While various drivers have been identified, a comprehensive understanding of the causes and consequences of spatio-temporal variability in subsurface electrochemistry is still lacking. Here we propose that variations in atmospheric electricity (AE) can influence the electrochemical environments of soils, water bodies and their sediments, with implications that are likely relevant for a wide range of organisms and ecosystem processes. We tested this hypothesis in field and laboratory case studies. Based on measurements of subsurface redox conditions in soils and sediment, we found evidence for both local and global variation in AE with corresponding patterns in subsurface redox conditions. In the laboratory, bacterial respiratory responses, electron transport activity and H2S production were observed to be causally linked to changes in atmospheric cation concentrations. We argue that such patterns are part of an overlooked phenomenon. This recognition widens our conceptual understanding of chemical and biological processes in the Earth's subsurface and their interactions with the atmosphere and the physical environment.

7.
Rev Sci Instrum ; 88(12): 126109, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289239

ABSTRACT

Charge is observed in clouds of all forms, which may influence their development and properties. In-cloud charge measurements require a wide dynamic range, extending from charge in aerosols and dusts to that present in thunderstorms. Unexpectedly large charge densities (>200 pC m-3) have recently been detected in layer clouds using balloon-carried linear electrometers. These, however, lead to instrument saturation if sufficient sensitivity for aerosol and droplet charge is maintained. Logarithmic electrometers provide an alternative but suffer strong non-linear thermal effects. This is a limitation for balloon-carried instruments that encounter temperature changes up to ∼100 °C, as full thermal compensation requires complexity inappropriate for disposable devices. Here, a novel hybrid system is described, combining linear and logarithmic electrometers to provide extended dynamic range (±50 pA), employing the negligible (±4%) total temperature drift of the linear device to provide in situ calibration of the logarithmic device. This combination opens up new measurement opportunities for charge in clouds, dusts, and aerosols.

8.
Philos Trans A Math Phys Eng Sci ; 374(2077)2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27550761

ABSTRACT

The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

9.
Philos Trans A Math Phys Eng Sci ; 374(2077)2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27550768

ABSTRACT

A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10-1000 km), which is almost impossible to achieve by other means. This modern approach to 'eclipse meteorology' as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ).This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

10.
Rev Sci Instrum ; 86(1): 016109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638136

ABSTRACT

A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s(-2). Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10(-3) and 10(-2) m(2) s(-3) to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

SELECTION OF CITATIONS
SEARCH DETAIL
...