Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Evolution ; 76(5): 985-1002, 2022 05.
Article in English | MEDLINE | ID: mdl-35304922

ABSTRACT

Theory predicts that when different barriers to gene flow become coincident, their joint effects enhance reproductive isolation and genomic divergence beyond their individual effects, but empirical tests of this "coupling" hypothesis are rare. Here, we analyze patterns of gene exchange among populations of European corn borer moths that vary in the number of acting barriers, allowing for comparisons of genomic variation when barrier traits or loci are in coincident or independent states. We find that divergence is mainly restricted to barrier loci when populations differ by a single barrier, whereas the coincidence of temporal and behavioral barriers is associated with divergence of two chromosomes harboring barrier loci. Furthermore, differentiation at temporal barrier loci increases in the presence of behavioral divergence and differentiation at behavioral barrier loci increases in the presence of temporal divergence. Our results demonstrate how the joint action of coincident barrier effects leads to levels of genomic differentiation that far exceed those of single barriers acting alone, consistent with theory arguing that coupling allows indirect selection to combine with direct selection and thereby lead to a stronger overall barrier to gene flow. Thus, the state of barriers-independent or coupled-strongly influences the accumulation of genomic differentiation.


Subject(s)
Gene Flow , Reproductive Isolation , Genetic Speciation , Genome , Genomics , Phenotype
2.
Mol Ecol ; 29(12): 2189-2203, 2020 06.
Article in English | MEDLINE | ID: mdl-32147850

ABSTRACT

Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.


Subject(s)
Genetics, Population , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Perciformes , Animals , Belize , Coral Reefs , Genotype , Microsatellite Repeats , Perciformes/genetics , Polymorphism, Single Nucleotide
3.
Curr Biol ; 29(20): 3501-3509.e5, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31607536

ABSTRACT

Synchronizing the annual timing of physiological, morphological, and behavioral transitions with seasons enables survival in temperate environments [1]. The capacity to adjust life history timing and track local seasonal cycles can facilitate geographic expansion [2], adaptation [3], and tolerance [4-6] during rapid environmental change. Understanding the proximate causes of variation in seasonal timing improves prediction of future response and persistence [7, 8]. However, relatively little is known about the molecular basis generating this diversity [9], particularly in Lepidoptera, a group with many species in decline [10, 11]. In insects, the stress-tolerant physiological state of diapause enables coping with seasonal challenges [1, 12-15]. Seasonal changes in photoperiod and temperature are used to synchronize diapause with winter, and timing of diapause transitions varies widely within and among species [9, 16]. Changes in spring diapause termination in the European corn borer moth (Ostrinia nubilalis) have allowed populations to respond to shorter winters and emerge ∼3 weeks earlier in the year [17]. Multiple whole-genome approaches suggest two circadian clock genes, period (per) and pigment-dispersing factor receptor (Pdfr), underlie this polymorphism. Per and Pdfr are within interacting quantitative trait loci (QTL) and differ in allele frequency among individuals that end diapause early or late, with alleles maintained in high linkage disequilibrium. Our results provide testable hypotheses about the physiological role of circadian clock genes in the circannual timer. We predict these gene candidates will be targets of selection for future adaptation under continued global climate change [18].


Subject(s)
Genome, Insect/physiology , Moths/genetics , Animals , Genomics , Infradian Rhythm/genetics , Time Factors
4.
G3 (Bethesda) ; 8(1): 39-51, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29158338

ABSTRACT

Early comparative genomics studies originally uncovered a nonintuitive pattern; genes involved in reproduction appeared to evolve more rapidly than other classes of genes. Currently, the emerging consensus is that genes encoding reproductive proteins evolve under variable selective pressures, producing more heterogeneous divergence patterns than previously appreciated. Here, we investigate a facet of that heterogeneity and explore the factors that drive male reproductive tissue-based heterogeneity in evolutionary rates. In Japanese quail (Coturnix japonica), genes with enriched expression in the testes evolve much more rapidly than those enriched in the foam gland (FG), a novel gland that secretes an airy foam that males transfer to females during mating. We compared molecular evolutionary patterns among (1) genes with induced expression in breeding vs. wintering conditions for both tissues and (2) genes that encode foam proteins (FPs) vs. those with varying degrees of expression specificity in the FG. We report two major findings. First, genes upregulated in breeding condition testes evolve exceptionally rapidly, while those induced in breeding condition FGs evolve slowly. These differences hold even after correcting for hormonally-dependent gene expression and chromosomal location. Second, genes encoding FPs are extremely conserved in terms of gene identity and sequence. Together, these finding suggest that genes involved in the reproductive function of each tissue drive the marked rate of heterogeneity.


Subject(s)
Avian Proteins/genetics , Coturnix/genetics , Evolution, Molecular , Reproduction/genetics , Testis/metabolism , Animals , Coturnix/growth & development , Exocrine Glands/growth & development , Exocrine Glands/metabolism , Female , Gene Expression Regulation, Developmental , Genetic Heterogeneity , Male , Testis/growth & development , Testosterone/metabolism
5.
Mol Ecol ; 26(8): 2331-2347, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28141898

ABSTRACT

Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of local adaptation and assortative mating on the dynamics of rearrangement evolution by studying how a rearrangement covaries with sexual and ecological trait divergence within a species. Previously, a chromosomal rearrangement that suppresses recombination on the Z (sex) chromosome was identified in European corn borer moths (Ostrinia nubilalis). We further characterize this recombination suppressor and explore its association with variation in sex pheromone communication and seasonal ecological adaptation in pairs of populations that are divergent in one or both of these characteristics. Direct estimates of recombination suppression in pedigree mapping families indicated that more than 39% of the Z chromosome (encompassing up to ~10 megabases and ~300 genes) resides within a nonrecombining unit, including pheromone olfactory receptor genes and a major quantitative trait locus that contributes to ecotype differences (Pdd). Combining direct and indirect estimates of recombination suppression, we found that the rearrangement was occasionally present between sexually isolated strains (E vs. Z) and between divergent ecotypes (univoltine vs. bivoltine). However, it was only consistently present when populations differed in both sexual and ecological traits. Our results suggest that independent of the forces that drove the initial establishment of the rearrangement, a combination of sexual and ecological divergence is required for rearrangement spread during speciation.


Subject(s)
Gene Rearrangement , Genetic Speciation , Moths/genetics , Sympatry , Adaptation, Physiological , Animals , Chromosome Mapping , Ecotype , Female , Genetics, Population , Male , North America , Pedigree , Quantitative Trait Loci , Recombination, Genetic , Seasons , Sex Attractants/genetics
6.
Mol Ecol ; 25(11): 2454-66, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26857437

ABSTRACT

Hybrid zones have been promoted as windows on the evolutionary process and as laboratories for studying divergence and speciation. Patterns of divergence between hybridizing species can now be characterized on a genomewide scale, and recent genome scans have focused on the presence of 'islands' of divergence. Patterns of heterogeneous genomic divergence may reflect differential introgression following secondary contact and provide insights into which genome regions contribute to local adaptation, hybrid unfitness and positive assortative mating. However, heterogeneous genome divergence can also arise in the absence of any gene flow, as a result of variation in selection and recombination across the genome. We suggest that to understand hybrid zone origins and dynamics, it is essential to distinguish between genome regions that are divergent between pure parental populations and regions that show restricted introgression where these populations interact in hybrid zones. The latter, more so than the former, reveal the likely genetic architecture of reproductive isolation. Mosaic hybrid zones, because of their complex structure and multiple contacts, are particularly good subjects for distinguishing primary intergradation from secondary contact. Comparisons among independent hybrid zones or transects that involve the 'same' species pair can also help to distinguish between divergence with gene flow and secondary contact. However, data from replicate hybrid zones or replicate transects do not reveal consistent patterns; in a few cases, patterns of introgression are similar across independent transects, but for many taxa, there is distinct lack of concordance, presumably due to variation in environmental context and/or variation in the genetics of the interacting populations.


Subject(s)
Genetic Speciation , Genetics, Population , Hybridization, Genetic , Animals , Gene Flow , Genome , Gryllidae/genetics , Models, Genetic , Plants , Reproductive Isolation , Selection, Genetic , Sympatry
7.
Proc Natl Acad Sci U S A ; 112(45): 13940-5, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26508628

ABSTRACT

Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates-the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are short-distance dispersers.


Subject(s)
Larva/physiology , Marine Biology , Animals , Probability
8.
G3 (Bethesda) ; 5(11): 2219-27, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311650

ABSTRACT

Characterizing the extent of genomic differentiation between recently diverged lineages provides an important context for understanding the early stages of speciation. When such lineages form discrete hybrid zones, patterns of differential introgression allow direct estimates of which genome regions are likely involved in speciation and local adaptation. Here we use a backcross experimental design to construct a genetic linkage map for the field crickets Gryllus firmus and Gryllus pennsylvanicus, which interact in a well-characterized hybrid zone in eastern North America. We demonstrate that loci with major allele frequency differences between allopatric populations are not randomly distributed across the genome. Instead, most are either X-linked or map to a few small autosomal regions. Furthermore, the subset of those highly differentiated markers that exhibit restricted introgression across the cricket hybrid zone are also concentrated on the X chromosome (39 of 50 loci) and in a single 7-cM region of one autosome. Although the accumulation on the sex chromosome of genes responsible for postzygotic barriers is a well-known phenomenon, less attention has been given to the genomic distribution of genes responsible for prezygotic barriers. We discuss the implications of our results for speciation, both in the context of the role of sex chromosomes and also with respect to the likely causes of heterogeneous genomic divergence. Although we do not yet have direct evidence for the accumulation of ecological, behavioral, or fertilization prezygotic barrier genes on the X chromosome, faster-X evolution could make these barriers more likely to be X-linked.


Subject(s)
Chromosomes, Insect/genetics , Genes, Insect , Genetic Linkage , Gryllidae/genetics , X Chromosome/genetics , Animals , Gene Frequency
9.
Trends Ecol Evol ; 30(7): 398-406, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25982153

ABSTRACT

Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor responses of species to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semipermeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change.


Subject(s)
Climate Change , Ecosystem , Genetics, Population , Hybridization, Genetic , Animal Distribution , Animals , Biodiversity , Plant Dispersal , Population Dynamics
10.
Mol Ecol ; 24(6): 1275-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25655667

ABSTRACT

Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non-native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human-mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.


Subject(s)
Genetic Variation , Genetics, Population , Introduced Species , Moths/genetics , Animals , Asia , Bayes Theorem , Cluster Analysis , DNA, Mitochondrial/genetics , Europe , Gene Frequency , Microsatellite Repeats , North America , Sequence Analysis, DNA
11.
PLoS One ; 9(10): e111856, 2014.
Article in English | MEDLINE | ID: mdl-25360617

ABSTRACT

The muskrat, Ondatra zibethicus, is a semiaquatic rodent native to North America that has become a highly successful invader across Europe, Asia, and South America. It can inflict ecological and economic damage on wetland systems outside of its native range. Anecdotal evidence suggests that, in the early 1900s, a population of muskrats was introduced to the Isles of Shoals archipelago, located within the Gulf of Maine, for the purposes of fur harvest. However, because muskrats are native to the northeastern coast of North America, their presence on the Isles of Shoals could be interpreted as part of the native range of the species, potentially obscuring management planning and biogeographic inferences. To investigate their introduced status and identify a historic source population, muskrats from Appledore Island of the Isles of Shoals, and from the adjacent mainland of Maine and New Hampshire, were compared for mitochondrial cytochrome b sequences and allele frequencies at eight microsatellite loci. Appledore Island muskrats consistently exhibited reduced genetic diversity compared with mainland populations, and displayed signatures of a historic bottleneck. The distribution of mitochondrial haplotypes is suggestive of a New Hampshire source population. The data presented here are consistent with a human-mediated introduction that took place in the early 1900s. This scenario is further supported by the zooarchaeological record and island biogeographic patterns. This is the first genetic study of an introduced muskrat population within US borders and of any island muskrat population, and provides an important contrast with other studies of introduced muskrat populations worldwide.


Subject(s)
Arvicolinae/genetics , Genetic Variation , Introduced Species , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Geography , Haplotypes/genetics , Islands , Microsatellite Repeats/genetics , North America , Population Density , Time Factors
12.
PLoS One ; 9(10): e108550, 2014.
Article in English | MEDLINE | ID: mdl-25279728

ABSTRACT

De novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and expression level in organisms without reference genomes. Investigators must first choose which high throughput sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454 and Illumina sequences for de novo transcriptome assembly and downstream RNA-Seq applications in a reproductive gland from a non-model bird species, the Japanese quail (Coturnix japonica). Four transcriptomes composed of either pure 454 or Illumina reads or mixtures of read types were assembled and evaluated for the same cost. Illumina assemblies performed best for de novo transcriptome characterization in terms of contig length, transcriptome coverage, and complete assembly of gene transcripts. Improvements over the Hybrid assembly were marginal, with the exception that the addition of 454 data significantly increased the number of genes annotated. The Illumina assembly provided the best reference to align an independent set of RNA-Seq data as ∼84% of reads mapped to single genes in the transcriptome. Contigs constructed solely from 454 data may impose problems for RNA-Seq as our 454 transcriptome revealed a high number of indels and many ambiguously mapped reads. Correcting the 454 transcriptome with Illumina reads was an effective strategy to deal with indel and frameshift errors inherent to the 454 transcriptome, but at the cost of transcriptome coverage. In the absence of a reference genome, we find that Illumina reads alone produced a high quality transcriptome appropriate for RNA-Seq gene expression analyses.


Subject(s)
Birds/genetics , Computational Biology , High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA , Transcriptome , Animals , Computational Biology/methods , Genomics/methods , Reproducibility of Results
13.
Mol Biol Evol ; 31(12): 3266-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193339

ABSTRACT

One striking pattern in molecular evolution is that genes encoding proteins involved in reproduction tend to evolve rapidly. Seminal fluid proteins frequently exhibit this pattern and directly affect multiple reproductive processes including enhancing sperm performance and mediating postmating sexual selection. Here, we investigate molecular evolutionary patterns of genes expressed in the foam gland of Japanese quail (Coturnix japonica), a novel reproductive phenotype. Foam provides an interesting contrast to seminal fluid because it plays a similar functional role, yet is produced, stored, and transferred to females independent of semen. We combined RNA-Seq and comparative genomics to examine evolutionary rates of genes with enriched expression in the foam gland of Japanese quail and those that exhibit enriched expression in two other tissues (testis and liver) and with broadly expressed genes. Overall, we found pronounced heterogeneity in evolutionary rates. Foam gland genes evolved under strong evolutionary constraint, whereas testis genes evolved rapidly and sometimes adaptively. These striking differences were robust to variation in gene expression. Genes with enriched expression in the foam gland did not show major shifts in selective pressure after the quail and chicken lineages split; in contrast, testis-expressed genes experienced a burst of accelerated evolution specifically along the Coturnix lineage. Our work demonstrates that, as a class, genes expressed in the novel foam gland experience different selection regimes than genes expressed in many other tissues producing seminal fluid proteins. Our results also highlight the importance of selective constraint in shaping the evolution of male reproductive genes.


Subject(s)
Cloaca/metabolism , Coturnix/genetics , Evolution, Molecular , Transcriptome , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Coturnix/metabolism , Male , Organ Specificity
14.
J Hered ; 105 Suppl 1: 795-809, 2014.
Article in English | MEDLINE | ID: mdl-25149255

ABSTRACT

Species can be defined as populations that are diagnosably distinct, reproductively isolated, cohesive, or exclusive groups of organisms. Boundaries between species in sympatry are maintained by intrinsic barriers to gene exchange; these boundaries may not be uniform in space, in time, or across the genome. Here, we explore the nature of the species boundary, defined as the phenotypes/genes/genome regions that remain differentiated in the face of potential hybridization and introgression. We emphasize that species boundaries are semipermeable, with permeability (gene exchange) being a function of genome region. The early evidence for semipermeable species boundaries came from data on differential introgression in hybrid zones. This "genic view" of species was common in the hybrid zone literature even when few molecular markers were available to characterize genome-wide patterns of variation. Now, molecular tools allow detailed characterization of differentiation between diverging lineages and patterns of variation across natural hybrid zones, but the questions being asked by evolutionary biologists have remained much the same. Recent data (from DNA sequences and genotypes) reinforce earlier conclusions about the semipermeable nature of most species boundaries. However, debate persists over the nature and extent of genome divergence that accompanies speciation.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Adaptation, Physiological/genetics , Animals , Animals, Domestic , Chimera , Crops, Agricultural , Genetics, Population , Genome , Humans , Multifactorial Inheritance , Reproductive Isolation
15.
Mol Ecol ; 23(7): 1668-78, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24795995

ABSTRACT

Hybrid zones are regions where individuals from genetically differentiated populations meet and mate, resulting in at least some offspring of mixed ancestry. Patterns of gene flow (introgression) in hybrid zones vary across the genome, allowing assessment of the role of individual genes or genome regions in reproductive isolation. Here, we document patterns of introgression between two recently diverged species of field crickets. We sampled at a very fine spatial scale and genotyped crickets for 110 highly differentiated single nucleotide polymorphisms (SNPs) identified through transcriptome scans. Using both genomic and geographic cline analysis, we document remarkably abrupt transitions (<100 m) in allele frequencies for 50 loci, despite high levels of gene flow at other loci. These are among the steepest clines documented for any hybridizing taxa. Furthermore, the cricket hybrid zone provides one of the clearest examples of the semi-permeability of species boundaries. Comparisons between data from the fine-scale transect and data (for the same set of markers) from sampling a much larger area in a different region of the cricket hybrid zone reveal consistent patterns of introgression for individual loci. The consistency in patterns of introgression between these two distant and distinct regions of the hybrid zone suggests that strong selection is acting to maintain abrupt discontinuities within the hybrid zone and that genomic regions with restricted introgression likely include genes that contribute to nonecological prezygotic barriers.


Subject(s)
Gene Flow , Genetic Speciation , Gryllidae/genetics , Hybridization, Genetic , Animals , Connecticut , Gene Frequency , Genetic Markers , Genotype , Logistic Models , Pennsylvania , Polymorphism, Single Nucleotide
16.
Evolution ; 67(12): 3653-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24299416

ABSTRACT

Hybrid zones act as genomic sieves. Although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets Gryllus pennsylvanicus and Gryllus firmus. Here, we have used 125 single nucleotide polymorphisms to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding SFPs with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evidence that SFPs have reduced gene exchange across the cricket hybrid zone. However, a number of genes exhibit dramatically reduced introgression, and many of these genes encode proteins with functional roles consistent with known barriers.


Subject(s)
Genes, Insect , Genetic Speciation , Gryllidae/genetics , Mosaicism , Animals , Gene Frequency , Polymorphism, Single Nucleotide , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism , Transcriptome
17.
Ecol Evol ; 3(4): 985-1002, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23610639

ABSTRACT

Hybrid zones provide insight into the nature of species boundaries and the evolution of barriers to gene exchange. Characterizing multiple regions within hybrid zones is essential for understanding both their history and current dynamics. Here, we describe a previously uncharacterized region of a well-studied hybrid zone between two species of field crickets, Gryllus pennsylvanicus and G. firmus. We use a combination of mitochondrial DNA sequencing, morphological data, and modeling of environmental variables to identify the ecological factors structuring the hybrid zone and define patterns of hybridization and introgression. We find an association between species distribution and natural habitat; Gryllus pennsylvanicus occupies natural habitat along forest edges and natural clearings, whereas G. firmus occupies more disturbed areas in agricultural and suburban environments. Hybridization and introgression occur across patch boundaries; there is evidence of substantial admixture both in morphological characters and mtDNA, over a broad geographic area. Nonetheless, the distribution of morphological types is bimodal. Given that F1 hybrids are viable and fertile in the lab, this suggests that strong pre-zygotic barriers are operating in this portion of the hybrid zone.

18.
Genetics ; 193(2): 501-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23172857

ABSTRACT

One of the central questions in evolutionary genetics is how much of the genome is involved in the early stages of divergence between populations, causing them to be reproductively isolated. In this article, we investigate genomic differentiation in a pair of closely related field crickets (Gryllus firmus and G. pennsylvanicus). These two species are the result of allopatric divergence and now interact along an extensive hybrid zone in eastern North America. Genes encoding seminal fluid proteins (SFPs) are often divergent between species, and it has been hypothesized that these proteins may play a key role in the origin and maintenance of reproductive isolation between diverging lineages. Hence, we chose to scan the accessory gland transcriptome to enable direct comparisons of differentiation for genes known to encode SFPs with differentiation in a much larger set of genes expressed in the same tissue. We have characterized differences in allele frequency between two populations for >6000 SNPs and >26,000 contigs. About 10% of all SNPs showed nearly fixed differences between the two species. Genes encoding SFPs did not have significantly elevated numbers of fixed SNPs per contig, nor did they seem to show larger differences than expected in their average allele frequencies. The distribution of allele frequency differences across the transcriptome is distinctly bimodal, but the relatively high proportion of fixed SNPs does not necessarily imply "ancient" divergence between these two lineages. Further studies of linkage disequilibrium and introgression across the hybrid zone are needed to direct our attention to those genome regions that are important for reproductive isolation.


Subject(s)
Genetic Speciation , Gryllidae/genetics , Semen/metabolism , Transcriptome , Animals , Evolution, Molecular , Gene Frequency , Genes, Insect , Genitalia, Male/metabolism , Gryllidae/metabolism , Insect Proteins/genetics , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Population/genetics , Reproductive Isolation
19.
Evolution ; 66(12): 3643-57, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23206125

ABSTRACT

The literature on speciation has expanded dramatically in recent years, catalyzed by the emergence of new conceptual frameworks, new theoretical approaches, and new methods for characterizing pattern and inferring process. As a consequence, the language used to describe the speciation process has become more complex. Increasing complexity may be an accurate reflection of current thinking with respect to how phenotypic differences limit gene flow, how selection results in the evolution of reproductive isolation, and genetic changes that contribute to speciation. However, increased language complexity has come at a cost; old definitions have been reconfigured and new terms have been introduced. In some instances, the introduction of new terminology has failed to recognize historical usage, leading to unnecessary ambiguity and redundancy. Although the writings of Mayr and Dobzhansky remain a reference point in the language of speciation, the last decades of the 20th century saw substantial changes in our thinking about the speciation process. During that period, the language of speciation remained relatively stable. In contrast, the first decade of the 21st century has witnessed a remarkable expansion of the language of speciation. Here, the origin and evolution of ideas about speciation are viewed through the lens of changing language use.


Subject(s)
Genetic Speciation , Terminology as Topic , Animals , Gene Flow , Genome , Geography , Hybridization, Genetic
20.
PLoS One ; 7(10): e46202, 2012.
Article in English | MEDLINE | ID: mdl-23071547

ABSTRACT

Post-copulatory interactions between males and females involve highly coordinated, complex traits that are often rapidly evolving and divergent between species. Failure to produce and deposit eggs may be a common post-mating prezygotic barrier, yet little is known about what prevents the induction of egg-laying between species. The field crickets, Gryllus firmus and G. pennsylvanicus are isolated by a one-way reproductive incompatibility; G. pennsylvanicus males fail to fertilize G. firmus eggs or to induce normal egg-laying in G. firmus females. We use experimental crosses to elucidate the role of accessory gland-derived vs. testis-derived components of the G. firmus male ejaculate on egg-laying in conspecific and heterospecific crosses. Using surgical castrations to create 'spermless' males that transfer only seminal fluid proteins (SFPs) we test whether G. firmus male SFPs can induce egg-laying in conspecific crosses and rescue egg-laying in crosses between G. pennsylvanicus males and G. firmus females. We find G. firmus SFPs induce only a small short-term egg-laying response and that SFPs alone cannot explain the normal induction of egg-laying. Gryllus firmus SFPs also do not rescue the heterospecific cross. Testis-derived components, such as sperm or prostaglandins, most likely stimulate egg-laying or act as transporters for SFPs to targets in the female reproductive tract. These results highlight the utility of experimental approaches for investigating the phenotypes that act as barriers between species and suggest that future work on the molecular basis of the one-way incompatibility between G. firmus and G. pennsylvanicus should focus on divergent testis-derived compounds or proteins in addition to SFPs.


Subject(s)
Ejaculation , Gryllidae/physiology , Sexual Behavior, Animal , Spermatozoa , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...