Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(35): 21101-21107, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817548

ABSTRACT

Accurately quantifying the composition of continental crust on Hadean and Archean Earth is critical to our understanding of the physiography, tectonics, and climate of our planet at the dawn of life. One longstanding paradigm involves the growth of a relatively mafic planetary crust over the first 1 to 2 billion years of Earth history, implying a lack of modern plate tectonics and a paucity of subaerial crust, and consequently lacking an efficient mechanism to regulate climate. Others have proposed a more uniformitarian view in which Archean and Hadean continents were only slightly more mafic than at present. Apart from complications in assessing early crustal composition introduced by crustal preservation and sampling biases, effects such as the secular cooling of Earth's mantle and the biologically driven oxidation of Earth's atmosphere have not been fully investigated. We find that the former complicates efforts to infer crustal silica from compatible or incompatible element abundances, while the latter undermines estimates of crustal silica content inferred from terrigenous sediments. Accounting for these complications, we find that the data are most parsimoniously explained by a model with nearly constant crustal silica since at least the early Archean.

2.
Sci Adv ; 6(15): eaav9634, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32284988

ABSTRACT

The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.

3.
Proc Natl Acad Sci U S A ; 116(2): 407-412, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30598434

ABSTRACT

Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.

4.
Proc Natl Acad Sci U S A ; 115(25): 6353-6356, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866820

ABSTRACT

Understanding Hadean (>4 Ga) Earth requires knowledge of its crust. The composition of the crust and volatiles migrating through it directly influence the makeup of the atmosphere, the composition of seawater, and nutrient availability. Despite its importance, there is little known and less agreed upon regarding the nature of the Hadean crust. By analyzing the 87Sr/86Sr ratio of apatite inclusions in Archean zircons from Nuvvuagittuq, Canada, we show that its protolith had formed a high (>1) Rb/Sr ratio reservoir by at least 4.2 Ga. This result implies that the early crust had a broad range of igneous rocks, extending from mafic to highly silicic compositions.

5.
Proc Natl Acad Sci U S A ; 113(49): 13959-13964, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27799558

ABSTRACT

Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

6.
Proc Natl Acad Sci U S A ; 113(39): 10802-6, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621460

ABSTRACT

The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of (40)Ar/(39)Ar "plateau" ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for (40)Ar/(39)Ar age spectrum disturbances, leaving open the possibility that partial (40)Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of (40)Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent (40)Ar/(39)Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.

7.
Proc Natl Acad Sci U S A ; 112(47): 14518-21, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26483481

ABSTRACT

Evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ∼ 3.5 billion years (Ga), the chemofossil record arguably to ∼ 3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in a crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ(13)CPDB of -24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ∼ 300 My earlier than has been previously proposed.


Subject(s)
Carbon/analysis , Silicates/analysis , Zirconium/analysis , Earth, Planet
8.
Proc Natl Acad Sci U S A ; 112(39): 12030-5, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26371325

ABSTRACT

Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya-Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17-16 to 12-11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet.

9.
Proc Natl Acad Sci U S A ; 109(34): 13486-92, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22869711

ABSTRACT

Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of µm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.


Subject(s)
Atmosphere/chemistry , Earth, Planet , History, Ancient , Hot Temperature , Lead/chemistry , Meteoroids , Temperature , Thorium/chemistry , Time Factors , Titanium/chemistry , Uranium/chemistry
10.
Nature ; 456(7221): 493-6, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-19037314

ABSTRACT

The first approximately 600 million years of Earth history (the 'Hadean' eon) remain poorly understood, largely because there is no rock record dating from that era. Detrital Hadean igneous zircons from the Jack Hills, Western Australia, however, can potentially provide insights into the conditions extant on our planet at that time. Results of geochemical investigations using these ancient grains have been interpreted to suggest the presence of a hydrosphere and continental crust before 4 Gyr. An underexploited characteristic of the >4 Gyr zircons is their diverse assemblage of mineral inclusions. Here we present an examination of over 400 Hadean zircons from Jack Hills, which shows that some inclusion assemblages are conducive to thermobarometry. Our thermobarometric analyses of 4.02-4.19-Gyr-old inclusion-bearing zircons constrain their magmatic formation conditions to about 700 degrees C and 7 kbar. This result implies a near-surface heat flow of approximately 75 mW m(-2), about three to five times lower than estimates of Hadean global heat flow. As the only site of magmatism on modern Earth that is characterized by heat flow of about one-quarter of the global average is above subduction zones, we suggest that the magmas from which the Jack Hills Hadean zircons crystallized were formed largely in an underthrust environment, perhaps similar to modern convergent margins.

11.
Science ; 306(5693): 89-91, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15459384

ABSTRACT

We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.


Subject(s)
Geologic Sediments/chemistry , Plutonium/analysis , Silicates/chemistry , Zirconium/chemistry , Crystallization , Earth, Planet , Evolution, Planetary , Half-Life , Isotopes/analysis , Lead/analysis , Mass Spectrometry , Time , Uranium/analysis , Western Australia , Xenon Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...