Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38691205

ABSTRACT

Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.

2.
Front Pharmacol ; 13: 860881, 2022.
Article in English | MEDLINE | ID: mdl-35496315

ABSTRACT

The goal of this mini-review is to summarize the collective experience of the authors for how modeling and simulation approaches have been used to inform various decision points from discovery to First-In-Human clinical trials. The article is divided into a high-level overview of the types of problems that are being aided by modeling and simulation approaches, followed by detailed case studies around drug design (Nektar Therapeutics, Genentech), feasibility analysis (Novartis Pharmaceuticals), improvement of preclinical drug design (Pfizer), and preclinical to clinical extrapolation (Merck, Takeda, and Amgen).

3.
Front Oncol ; 12: 818641, 2022.
Article in English | MEDLINE | ID: mdl-35350575

ABSTRACT

Bispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial. To this end, computational approaches can be instrumental to systematically exploring the effects of combining bispecific antibodies with CRS intervention strategies. Here, we employ a logical model to describe the action of bispecific antibodies and the complex interplay of various immune system components and use it to perform simulation experiments to improve the understanding of the factors affecting CRS. We performed a sensitivity analysis to identify the comedications that could ameliorate CRS without impairing tumor clearance. Our results agree with publicly available experimental data suggesting anti-TNF and anti-IL6 as possible co-treatments. Furthermore, we suggest anti-IFNγ as a suitable candidate for clinical studies.

4.
Mol Cancer Ther ; 20(10): 1977-1987, 2021 10.
Article in English | MEDLINE | ID: mdl-34376583

ABSTRACT

MUC12 is a transmembrane mucin that is highly expressed in >50% of primary and metastatic colorectal tumors. MUC12 is also expressed by normal epithelial cells of the colon and small intestine. Although MUC12 localization in normal epithelial cells is restricted to the apical membrane, expression in tumors is depolarized and shows broad membrane localization. The differential localization of MUC12 in tumor cells as compared with normal cells makes it a potential therapeutic target. Here, we evaluated targeting of MUC12 with a BiTE (bispecific T-cell engager) molecule. We generated a panel of proof-of-concept half-life extended (HLE) BiTE molecules that bind MUC12 on tumor cells and CD3 on T cells. We prioritized one molecule based on in vitro activity for further characterization in vivo In vitro, the MUC12 HLE BiTE molecule mediated T-cell-redirected lysis of MUC12-expressing cells with half-maximal lysis of 4.4 ± 0.9 to 117 ± 78 pmol/L. In an exploratory cynomolgus monkey toxicology study, the MUC12 HLE BiTE molecule administered at 200 µg/kg with a step dose to 1,000 µg/kg was tolerated with minimal clinical observations. However, higher doses were not tolerated, and there was evidence of damage in the gastrointestinal tract, suggesting dose levels projected to be required for antitumor activity may be associated with on-target toxicity. Together, these data demonstrate that the apically restricted expression of MUC12 in normal tissues is accessible to BiTE molecule target engagement and highlight the difficult challenge of identifying tumor-selective antigens for solid tumor T-cell engagers.


Subject(s)
Antibodies, Bispecific/pharmacology , Biomarkers, Tumor/metabolism , CD3 Complex/immunology , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Mucins/antagonists & inhibitors , T-Lymphocytes/immunology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytotoxicity, Immunologic/immunology , Humans , Immunotherapy , Macaca fascicularis , Male , Mucins/immunology , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cell Rep Med ; 2(5): 100263, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34095876

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters. BW loss is greater with GIPR-Ab/GLP-1 than with GIPR-Ab or a control antibody conjugate, suggesting synergistic effects. GIPR-Ab/GLP-1 also reduces the respiratory exchange ratio in DIO mice. Simultaneous receptor binding and rapid receptor internalization by GIPR-Ab/GLP-1 amplify endosomal cAMP production in recombinant cells expressing both receptors. This may explain the efficacy of the bispecific molecules. Overall, our GIPR-Ab/GLP-1 molecules promote BW loss, and they may be used for treating obesity.


Subject(s)
Body Weight/physiology , Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Animals , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose Tolerance Test/methods , Haplorhini/metabolism , Mice, Obese
6.
Nat Commun ; 11(1): 3463, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32651374

ABSTRACT

Understanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS2. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-µm spatial control, and a rectification ratio of over 104. Doping and defects formation are elucidated by means of X-Ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory. We find that p-type doping in HCl/H2O atmosphere is related to the rearrangement of sulfur atoms, and the formation of protruding covalent S-S bonds on the surface. Alternatively, local heating MoS2 in N2 produces n-character.

7.
Pharm Res ; 37(6): 102, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32440783

ABSTRACT

PURPOSE: To model absolute neutrophil count (ANC) suppression in response to acute radiation (AR) exposure and evaluate ANC time course as a predictor of overall survival (OS) in response to AR exposure with or without treatment with granulocyte colony-stimulating factor in nonhuman primates. METHODS: Source data were obtained from two pivotal studies conducted in rhesus macaques exposed to 750 cGy of whole body irradiation on day 0 that received either placebo, daily filgrastim, or pegfilgrastim (days 1 and 8 after irradiation). Animals were observed for 60 days with ANC measured every 1 to 2 days. The population model of ANC response to AR and the link between observed ANC time course and OS consisted of three submodels characterizing injury due to radiation, granulopoiesis, and a time-to-event model of OS. RESULTS: The ANC response model accurately described the effects of AR exposure on the duration of neutropenia. ANC was a valid surrogate for survival because it explained 76% (95% CI, 41%-97%) and 73.2% (95% CI, 38.7%-99.9%) of the treatment effect for filgrastim and pegfilgrastim, respectively. CONCLUSION: The current model linking radiation injury to neutropenia and ANC time course to OS can be used as a basis for translating these effects to humans.


Subject(s)
Filgrastim/administration & dosage , Models, Biological , Neutropenia/prevention & control , Neutrophils , Polyethylene Glycols/administration & dosage , Radiation Injuries, Experimental/prevention & control , Animals , Feasibility Studies , Female , Leukocyte Count , Leukopoiesis/drug effects , Leukopoiesis/radiation effects , Macaca mulatta , Male , Neutropenia/blood , Neutropenia/etiology , Neutropenia/mortality , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/mortality , Time Factors
8.
Clin Transl Sci ; 13(4): 807-817, 2020 07.
Article in English | MEDLINE | ID: mdl-32112517

ABSTRACT

Acute exposure to high doses of radiation leads to severe myelosuppression, but few treatments are currently available to treat hematopoietic syndrome of acute radiation syndrome. Granulocyte colony stimulating factors (e.g., filgrastim) stimulate proliferation of neutrophil precursors and enhance mature neutrophil function. Owing to ethical constraints on conducting clinical research in lethally irradiated humans, we developed a model-based strategy to integrate preclinical experience in irradiated nonhuman primates (NHPs) and other clinical myelosuppressive conditions to inform filgrastim dosing to treat hematopoietic syndrome of acute radiation syndrome. Models predicting neutrophil counts and overall survival based on drug exposures were calibrated and scaled from NHPs to adult and pediatric human subjects. Several scenarios were examined investigating variations in filgrastim doses, dose frequency, treatment initiation, and duration, as well as the effect of age and radiation dose rate. Model-based simulations and established safety profiles supported that a subcutaneous filgrastim dose of 10 µg/kg once daily provides a significant survival benefit (50%) over placebo in both adults and children, provided that the treatment is initiated within 1-14 days after radiation exposure and lasts 2-3 weeks. For treatment durations of longer than 3 weeks, filgrastim treatment is not expected to provide significantly greater benefit. This survival benefit is expected to hold for the wide range of radiation doses and dose rates (0.01-1,000 Gy/hours) examined.


Subject(s)
Acute Radiation Syndrome/drug therapy , Filgrastim/administration & dosage , Hematologic Agents/administration & dosage , Acute Radiation Syndrome/mortality , Adult , Age Factors , Animals , Child , Computer Simulation , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Drug Evaluation, Preclinical , Female , Granulocyte Precursor Cells/drug effects , Humans , Injections, Subcutaneous , Macaca mulatta , Male , Myelopoiesis/drug effects , Risk Assessment/methods , Treatment Outcome
9.
Br J Clin Pharmacol ; 84(5): 911-925, 2018 05.
Article in English | MEDLINE | ID: mdl-29318653

ABSTRACT

AIM: The objective of the present study was to use pharmacokinetic-pharmacodynamic modelling to characterize the effects of chemotherapy on the granulopoietic system and to predict the absolute neutrophil counts (ANCs) for patients with chemotherapy-induced neutropenia treated with filgrastim and pegfilgrastim. METHODS: Data were extracted from 10 phase I-III studies conducted in 110 healthy adults, and 618 adult and 52 paediatric patients on chemotherapy following administration of filgrastim or pegfilgrastim. The structural model accounted for ANC dynamics and the effects of filgrastim and pegfilgrastim, chemotherapy and corticosteroids. The impact of neutrophils on drug disposition was based on a drug receptor-binding model that assumed quasi-equilibrium and stimulation of the production and maturation of neutrophils upon treatment. The chemotherapy and corticosteroid effects were represented by kinetic-pharmacodynamic-type models, where chemotherapy stimulated elimination of neutrophil precursors at the mitotic stage, and corticosteroids stimulated neutrophil production. RESULTS: The systemic half-lives of filgrastim (2.6 h) and pegfilgrastim (10.1 h) were as expected. The effective half-life of chemotherapy was 9.6 h, with a 2-day killing effect. The rate of receptor elimination from mitotic compartments exhibited extreme interindividual variability (% coefficient of variation >200), suggesting marked differences in sensitivity to chemotherapy effects on ANCs. The stimulatory effects of pegfilgrastim were significantly greater than those of filgrastim. Model qualification confirmed the predictive capability of this model. CONCLUSION: This qualified model simulates the time course of ANC in the absence or presence of chemotherapy and predicts nadir, time to nadir and time of recovery from different grades of neutropenia upon treatment with filgrastim and pegfilgrastim.


Subject(s)
Filgrastim/adverse effects , Filgrastim/pharmacokinetics , Models, Biological , Neutrophils/drug effects , Polyethylene Glycols/adverse effects , Polyethylene Glycols/pharmacokinetics , Randomized Controlled Trials as Topic/statistics & numerical data , Adrenal Cortex Hormones/adverse effects , Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Female , Filgrastim/pharmacology , Healthy Volunteers , Hematologic Agents/adverse effects , Hematologic Agents/blood , Hematologic Agents/pharmacokinetics , Hematologic Agents/pharmacology , Humans , Leukocyte Count , Male , Neutropenia/chemically induced , Polyethylene Glycols/pharmacology
11.
AAPS J ; 19(2): 510-519, 2017 03.
Article in English | MEDLINE | ID: mdl-28004347

ABSTRACT

Affinity optimization of monoclonal antibodies (mAbs) is essential for developing drug candidates with the highest likelihood of clinical success; however, a quantitative approach for setting affinity requirements is often lacking. In this study, we computationally analyzed the in vivo mAb-target binding kinetics to delineate general principles for defining optimal equilibrium dissociation constant ([Formula: see text]) of mAbs against soluble and membrane-bound targets. Our analysis shows that in general [Formula: see text] to achieve 90% coverage for a soluble target is one tenth of its baseline concentration ([Formula: see text]), and is independent of the dosing interval, target turnover rate or the presence of competing ligands. For membrane-bound internalizing targets, it is equal to the ratio of internalization rate of mAb-target complex and association rate constant ([Formula: see text]). In cases where soluble and membrane-bound forms of the target co-exist, [Formula: see text] lies within a range determined by the internalization rate ([Formula: see text]) of the mAb-membrane target complex and the ratio of baseline concentrations of soluble and membrane-bound forms ([Formula: see text]). Finally, to demonstrate practical application of these general rules, we collected target expression and turnover data to project [Formula: see text] for a number of marketed mAbs against soluble (TNFα, RANKL, and VEGF) and membrane-bound targets (CD20, EGFR, and HER2).


Subject(s)
Antibodies, Monoclonal/metabolism , Drug Design , Models, Biological , Proteins/metabolism , Antibodies, Monoclonal/administration & dosage , Humans , Kinetics , Ligands , Membrane Proteins/metabolism , Protein Binding
12.
J Pharmacokinet Pharmacodyn ; 43(5): 513-27, 2016 10.
Article in English | MEDLINE | ID: mdl-27612462

ABSTRACT

We aimed to develop a cell-level pharmacodynamics-mediated drug disposition (PDMDD) model to analyze in vivo systems where the PD response to a drug has an appreciable effect on the pharmacokinetics (PK). An existing cellular level model of PD stimulation was combined with the standard target-mediated drug disposition (TMDD) model and the resulting model structure was parametrically identifiable from typical in vivo PK and PD data. The PD model of the cell population was controlled by the production rate k in and elimination rate k out which could be stimulated or inhibited by the number of bound receptors on a single cell. Simulations were performed to assess the impact of single and repeated dosing on the total drug clearance. The clinical utility of the cell-level PDMDD model was demonstrated by fitting published data on the stimulatory effects of filgrastim on absolute neutrophil counts in healthy subjects. We postulated repeated dosing as a means of detecting and quantifying PDMDD as a single dose might not be sufficient to elicit the cellular response capable of altering the receptor pool to visibly affect drug disposition. In the absence of any PD effect, the model reduces down to the standard TMDD model. The applications of this model can be readily extended to include chemotherapy-induced cytopenias affecting clearance of endogenous hematopoietic growth factors, different monoclonal antibodies and immunogenicity effects on PK.


Subject(s)
Filgrastim/pharmacokinetics , Hematologic Agents/pharmacokinetics , Models, Biological , Neutrophils/drug effects , Receptors, Drug/metabolism , Biological Transport , Computer Simulation , Dose-Response Relationship, Drug , Filgrastim/administration & dosage , Hematologic Agents/administration & dosage , Hematologic Agents/blood , Humans , Metabolic Clearance Rate , Neutrophils/cytology , Neutrophils/metabolism , Nonlinear Dynamics , Protein Binding , Tissue Distribution
13.
J Pharmacokinet Pharmacodyn ; 42(6): 709-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26341875

ABSTRACT

A mechanistic model describing the effects of chemotherapy and radiation on platelet counts and endogenous thrombopoietin (eTPO) in mice was developed. Thrombocytopenia was induced in mice by injection of carboplatin followed by the whole body irradiation on days 0, 28, and 56, with platelet and eTPO samples collected over 84 days. The pharmacodynamic model consisted of a series of aging compartments representing proliferating megakaryocyte precursors, megakaryocytes, and platelets with possible eTPO clearance through internalization. The cytotoxic effects of treatment were described by the kinetics of the effect (K-PD) model, and stimulation of platelet production by eTPO was considered to be driven by receptor occupancy. The proposed PD model adequately described the platelet counts and eTPO concentrations in mice by accounting for nadirs and peaks of platelet count, and rebounds in eTPO time course profiles. The estimates of model parameters were in good agreement with their physiological values reported in literature for mice with platelet lifespan of 4.3 days and 185 cMpl receptors per platelet. The predicted duration of the treatment effect was 0.82 h (approximately 5 carboplatin half-lives in mice). The data was not informative about the eTPO stimulatory effect as the nominal precursor production rate was sufficient to account for platelet response to treatment. The model quantified the inverse relationship between eTPO levels and platelet counts and offered an explanation of the tolerance effect observed in the eTPO data. The simulated rebound in free receptors levels correlated with rebounds in eTPO levels. The model suggests that the duration of the toxic effects is determined by the turnover of the proliferating cells in the bone marrow. This indicates that the lifespan of the target cells (megakaryocyte precursors, megakaryocytes and platelets) is a key determinant in the duration of both drug exposure and toxicity due to treatment. The model can be extended to account for pharmacokinetics of exogenous drugs and be applied to analysis of human data.


Subject(s)
Antineoplastic Agents/toxicity , Blood Platelets/drug effects , Blood Platelets/radiation effects , Carboplatin/toxicity , Chemoradiotherapy/adverse effects , Models, Biological , Models, Statistical , Radiation Injuries/chemically induced , Thrombocytopenia/chemically induced , Whole-Body Irradiation/adverse effects , Animals , Antineoplastic Agents/administration & dosage , Biomarkers/blood , Blood Platelets/metabolism , Blood Platelets/pathology , Carboplatin/administration & dosage , Computer Simulation , Drug Administration Schedule , Female , Humans , Mice , Platelet Count , Radiation Dosage , Radiation Injuries/blood , Receptors, Thrombopoietin/blood , Risk Assessment , Thrombocytopenia/blood , Thrombopoiesis/drug effects , Thrombopoiesis/radiation effects , Thrombopoietin/blood , Time Factors
14.
J Pharmacokinet Pharmacodyn ; 42(1): 1-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25559227

ABSTRACT

Bispecific antibodies (BAbs) are novel constructs that are under development and show promise as new therapeutic modalities for cancer and autoimmune disorders. The aim of this study is to develop a semi-mechanistic modeling approach to elucidate the disposition of BAbs in plasma and possible sites of action in humans. Here we present two case studies that showcase the use of modeling to guide BAb development. In case one, a BAb is directed against a soluble and a membrane-bound ligand for treating systemic lupus erythematosus, and in case two, a BAb targets two soluble ligands as a potential treatment for ulcerative colitis and asthma. Model simulations revealed important differences between plasma and tissues, when evaluated for drug disposition and target suppression. Target concentrations at tissue sites and type (soluble vs membrane-bound), tissue-site binding, and binding affinity are all major determinants of BAb disposition and subsequently target suppression. For the presented case studies, higher doses and/or frequent dosing regimens are required to achieve 80 % target suppression in site specific tissue (the more relevant matrix) as compared to plasma. Site-specific target-mediated models may serve to guide the selection of first-in-human doses for new BAbs.


Subject(s)
Antibodies, Bispecific/pharmacokinetics , Computer Simulation , Drug Design , Models, Biological , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/blood , Antibodies, Bispecific/therapeutic use , Asthma/drug therapy , Asthma/metabolism , Binding Sites , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Humans , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/metabolism , Organ Specificity , Predictive Value of Tests , Protein Binding , Tissue Distribution
15.
J Pharmacokinet Pharmacodyn ; 41(2): 141-51, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24619141

ABSTRACT

Practitioners of pharmacokinetic/pharmacodynamic modeling routinely employ various software packages that enable them to fit differential equation based mechanistic or empirical models to biological/pharmacological data. The availability and choice of different analytical tools, while enabling, can also pose a significant challenge in terms of both, implementation and transferability. A package has been developed that addresses these issues by creating a simple text-based format, which provides methods to reduce coding complexity and enables the modeler to describe the components of the model based on the underlying physiochemical processes. A Perl script builds the system for multiple formats (ADAPT, MATLAB, Berkeley Madonna, etc.), enabling analysis across several software packages and reducing the chance for transcription error. Workflows can then be built around this package, which can increase efficiency and model availability. As a proof of concept, tools are included that allow models constructed in this format to be run with MATLAB both at the scripting level and through a generic graphical application that can be compiled and run as a stand-alone application.


Subject(s)
Models, Biological , Pharmacokinetics , Software , User-Computer Interface
16.
J Phys Chem B ; 117(38): 11249-59, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23789750

ABSTRACT

Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm(2) with a maximum current of 1.5 µA/cm(2), which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.


Subject(s)
Bacterial Chromatophores/chemistry , Rhodospirillum rubrum/metabolism , Solar Energy , Bacterial Chromatophores/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytochromes c/chemistry , Electrochemical Techniques , Electrodes , Gold/chemistry , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Microscopy, Atomic Force , Quantum Theory , Spectrometry, Fluorescence
17.
J Mol Microbiol Biotechnol ; 23(1-2): 48-62, 2013.
Article in English | MEDLINE | ID: mdl-23615195

ABSTRACT

The results of a detailed structural and functional proteomic analysis of intracytoplasmic membrane (ICM) assembly in the model purple phototrophic bacterium Rhodobacter sphaeroides are reviewed in this report. Proteomics approaches have focused upon identification of membrane proteins temporally expressed during ICM development and spatially localized within the internal cell membranes, together with their structural and functional correlates. For the examination of temporal protein expression, procedures were established for the induction of ICM formation at low oxygen tension and for ICM remodeling in cells adapting to low intensity illumination, which permitted isolation by rate-zone sedimentation of ICM growth initiation sites (CM invaginations) in an upper-pigmented band (UPB), together with more mature ICM vesicles (chromatophores) as the main band. Nondenaturing clear native gel electrophoresis of the chromatophore fraction gave rise to four pigmented bands: the top and bottom bands contained the reaction center-light-harvesting 1 (RC-LH1) core complex and the LH2 peripheral antenna, respectively, while two bands of intermediate migration exhibited distinct associations of LH2 and core complexes. Proteomic analysis of the gel bands revealed developmental changes including increasing levels of LH2 polypeptides relative to those of core complexes as ICM development proceeded, as well as a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits, and the cytochrome bc1 complex. High counts were also observed for RSP6124, a protein of unknown function, that were correlated with increasing LH2 levels. RC-LH1-containing clear native electrophoresis gel bands from the UPB were enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane assembly factors (viz., preprotein translocases YidC, YajC and SecY, bacterial type 1 signal peptidase and twin arg translocation subunit TatA), thereby confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination in which preferential assembly of the RC-LH1 complex occurs. Functional aspects of the photosynthetic unit assembly process were monitored by fluorescence induction/relaxation measurements of the variable fluorescence arising from LH-bacteriochlorophyll a. Slowing of the rate of RC electron transfer turnover (τQA), as assessed from the relaxation phase, was correlated with the growth of the functional absorption cross section (σ) and LH2/LH1 molar ratios. This is thought to arise from the imposition of constraints upon free diffusion of ubiquinone (UQ) redox species between the RC and cytochrome bc1 complex as the ICM bilayer becomes densely packed with LH2 rings. Such LH2 packing was confirmed in a comparison by high-resolution atomic force microscopy of ICM patches from cells grown at high and low light intensity [Adams and Hunter: Biochim Biophys Acta 2012;1817:1616-1627], in which the increasing LH2 levels form densely packed LH2-only domains, representing the light-responsive antenna complement arising under low illumination. In contrast, LH2 is initially dispersed in rows and small cluster-separating linear arrays of largely dimeric RC-LH1 core complexes, which become filled with LH2 during acclimation to reduced light intensity. In phototrophically grown cells that were transferred to oxic conditions in the dark, fluorescence induction/relaxation measurements showed that despite a growth burst independent of photosynthetic pathways, functional photosynthetic units were maintained for up to 24 h after the transition. The τQA was accelerated from ∼1 to 0.5 ms by 8 h, reflecting the decrease in LH2 levels, facilitating more rapid UQ redox species diffusion in the membrane bilayer as crowding by LH2 is overcome. Under these circumstances, UPB levels were elevated with significant increases in LH1/LH2 molar ratio. These changes indicate that vesiculation of CM growth initiation sites to form vesicular ICM was arrested under oxic conditions.


Subject(s)
Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Light-Harvesting Protein Complexes/metabolism , Rhodobacter sphaeroides/metabolism , Rhodobacter sphaeroides/ultrastructure , Bacterial Proteins/metabolism , Bacteriochlorophylls/metabolism , Electron Transport , Membrane Proteins/metabolism , Microscopy, Atomic Force , Photosynthesis , Proteomics
18.
AAPS J ; 14(4): 714-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22798020

ABSTRACT

Biotherapeutics are becoming an increasingly common drug class used to treat autoimmune and other inflammatory conditions. Optimization of absorption, distribution, metabolism, and excretion (ADME) profiles of biotherapeutics is crucial for clinical, as well as commercial, success of these drugs. This review focuses on the common questions and challenges in ADME optimization of biotherapeutics for inflammatory conditions. For these immunomodulatory and/or immunosuppressive biotherapeutics, special consideration should be given to the assessment of the interdependency of ADME profiles, pharmacokinetic/pharmacodynamic (PK/PD) relationships, and immunogenicity profiles across various preclinical species and humans, including the interdependencies both in biology and in assay readouts. The context of usage, such as dosing regimens, extent of disease, concomitant medications, and drug product characteristics may have a direct or indirect (via modulation of immunogenicity) impact on ADME profiles of biotherapeutics. Along these lines, emerging topics include assessments of preexisting reactivity to a biotherapeutic agent, impact of immunogenicity on tissue exposure, and analysis of penetration to normal versus inflamed tissues. Because of the above complexities and interdependences, it is essential to interpret PK, PD, and anti-drug antibody results in an integrated manner. In addition, because of the competitive landscape in autoimmune and inflammatory markets, many pioneering ADME-centric protein engineering and subsequent in vivo testing (such as optimization of novel modalities to extend serum and tissue exposures and to improve bioavailability) are being conducted with biotherapeutics in this therapeutic area. However, the ultimate challenge is demonstration of the clinical relevance (or lack thereof) of modified ADME and immunogenicity profiles.


Subject(s)
Immunologic Factors/pharmacokinetics , Immunosuppressive Agents/pharmacokinetics , Proteins/pharmacokinetics , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Biological Availability , Drug Evaluation, Preclinical/methods , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Inflammation/drug therapy , Inflammation/immunology , Protein Engineering/methods , Proteins/pharmacology , Proteins/therapeutic use
19.
Cancer Res ; 72(7): 1632-41, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22350416

ABSTRACT

Combination chemotherapy represents the standard-of-care for non-Hodgkin lymphoma. However, the development of new therapeutic regimens is empirical and this approach cannot be used prospectively to identify novel or optimal drug combinations. Quantitative system pharmacodynamic models could promote the discovery and development of combination regimens based upon first principles. In this study, we developed a mathematical model that integrates temporal patterns of drug exposure, receptor occupancy, and signal transduction to predict the effects of the CD20 agonist rituximab in combination with rhApo2L/TNF-related apoptosis inducing ligand or fenretinide, a cytotoxic retinoid, upon growth kinetics in non-Hodgkin lymphoma xenografts. The model recapitulated major regulatory mechanisms, including target-mediated disposition of rituximab, modulation of proapoptotic intracellular signaling induced by CD20 occupancy, and the relative efficacy of death receptor isoforms. The multiscale model coupled tumor responses to individual anticancer agents with their mechanisms of action in vivo, and the changes in Bcl-xL and Fas induced by CD20 occupancy were linked to explain the synergy of these drugs. Tumor growth profiles predicted by the model agreed with cell and xenograft data, capturing the apparent pharmacologic synergy of these agents with fidelity. Together, our findings provide a mechanism-based platform for exploring new regimens with CD20 agonists.


Subject(s)
Antigens, CD20/physiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphoma, Non-Hodgkin/drug therapy , Signal Transduction , Animals , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antibodies, Monoclonal, Murine-Derived/pharmacokinetics , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, CD20/analysis , Cell Proliferation/drug effects , Fenretinide/administration & dosage , Fenretinide/pharmacokinetics , Humans , Mice , Models, Biological , Rituximab , TNF-Related Apoptosis-Inducing Ligand/administration & dosage , TNF-Related Apoptosis-Inducing Ligand/pharmacokinetics , Tissue Distribution
20.
AAPS J ; 14(1): 97-104, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22228117

ABSTRACT

We have recently demonstrated that intra-articular (IA) administration of human recombinant lubricin, LUB:1, significantly inhibited cartilage degeneration and pain in the rat meniscal tear model of post-traumatic arthritis. In this report, we show that after a single IA injection to naïve rats and rats that underwent unilateral meniscal tear, [(125)I]LUB:1 had a tri-phasic disposition profile, with the alpha, beta, and gamma half-life estimates of 4.5 h, 1.5 days, and 2.1 weeks, respectively. We hypothesize that the terminal phase kinetics was related to [(125)I]LUB:1 binding to its ligands. [(125)I]LUB:1 was detected on articular cartilage surfaces as long as 28 days after single IA injection. Micro-autoradiography analysis suggested that [(125)I]LUB:1 tended to localize to damaged joint surfaces in rats with meniscal tear. After a single intravenous (IV) dose to rats, [(125)I]LUB:1 was eliminated rapidly from the systemic circulation, with a mean total body clearance of 154 mL/h/kg and a mean elimination half-life (t (1/2)) of 6.7 h. Overall, LUB:1 has met a desired disposition profile of a potential therapeutic intended for an IA administration: target tissue (knee) retention and fast elimination from the systemic circulation after a single IA or IV dose.


Subject(s)
Arthritis, Experimental/drug therapy , Glycoproteins/pharmacokinetics , Knee Joint/drug effects , Animals , Arthritis, Experimental/pathology , Autoradiography/methods , CHO Cells , Cricetinae , Cricetulus , Female , Glycoproteins/administration & dosage , Glycoproteins/pharmacology , Half-Life , Humans , Injections, Intra-Articular , Injections, Intravenous , Knee Joint/pathology , Male , Rats , Rats, Inbred Lew , Recombinant Proteins , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...