Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 12(42): 8790-8797, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27722476

ABSTRACT

An instrument was developed for measuring real time changes in the surface tension and viscosity of multicomponent droplets of miscible liquids and other soft materials. Droplets containing glycerol and water were supported on superamphiphobic surfaces and vibrated by applying a short mechanical impulse. Laser light was refracted through the droplets and allowed to fall on the surface of a photodiode. Time dependent variations in the intensity measured by the photodiode during vibration were used to monitor the decay of the droplet oscillations. The frequencies and spectral widths of the droplet vibrational resonances were then obtained from Fourier transforms of these time dependent intensity signals. A recently developed model of viscoelastic droplet vibration was used along with these values and measurements of the drop dimensions to extract the surface tension and viscosity of the drops as they evaporated. Collection of data was automated and values of frequency, spectral width, drop size, surface tension and viscosity were obtained with a time resolution of three seconds over a period of thirty minutes. The values of surface tension and viscosity obtained were shown to be in good agreement with literature values obtained from bulk glycerol/water solutions; thus validating the technique for wider application to other multicomponent liquids and soft matter systems.

2.
Langmuir ; 32(16): 4071-6, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27035586

ABSTRACT

The rheological properties of microliter sized drops of polymer solutions were investigated using measurements of their mechanical vibrational response. Drops were suspended on superamphiphobic substrates and vibrated by the application of a short mechanical impulse. Surface vibrations were monitored by refracting laser light through the drops and focusing the refracted light onto the surface of a photodiode. Time dependent variations in the photodiode output were Fourier transformed to obtain the frequency and spectral width of the mechanical resonances of the drops. These quantities were related to the frequency dependent shear storage and loss moduli (G' and G″, respectively) using a simple theoretical model. The resulting rheological properties were found to be in agreement with microrheology measurements of the same solutions. Drop vibration therefore provides a fast and accurate method of quantifying the rheological properties of single drops.

SELECTION OF CITATIONS
SEARCH DETAIL
...