Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Expert Opin Ther Pat ; 32(5): 591-604, 2022 May.
Article in English | MEDLINE | ID: mdl-35220857

ABSTRACT

INTRODUCTION: Leishmaniasis is a neglected tropical infectious disease. The available limited therapeutic options for leishmaniasis are inadequate due to their poor pharmacokinetic profile, resistance, toxicity, high cost, and compliance problems. This warrants identification of new targets for the development of safer and effective anti-Leishmania therapy. The kinetoplastid specific proteasome (KSP) is a novel validated target to develop drugs against leishmaniasis. AREA COVERED: This review focuses on all the published patent applications and granted patents related to the studied small molecules as KSP inhibitors (KSPIs) against Leishmania from 1998 to 31 December 2021. EXPERT OPINION: A little amount of work has been done on KSPIs, but the study results are quite encouraging. LXE408 and GSK3494245 are two KSPIs in different phases of clinical trials. Some other small molecules have also shown KSP inhibitory potential, but they are not in clinical trials. The KSPIs are promising next-generation orally active patient compliant drugs against kinetoplastid diseases, including leishmaniasis. However, the main challenge to discover the KSPIs will be the resistance development and their selectivity against the proteasome of eukaryotic cells.


Subject(s)
Antiprotozoal Agents , Leishmaniasis , Antiprotozoal Agents/pharmacology , Humans , Leishmaniasis/drug therapy , Oxazoles , Patents as Topic , Proteasome Endopeptidase Complex , Proteasome Inhibitors/adverse effects , Pyrimidines
2.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641339

ABSTRACT

The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Drug Discovery , Hydroxylamines/therapeutic use , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Clinical Trials as Topic , Cytidine/administration & dosage , Cytidine/chemistry , Cytidine/therapeutic use , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/chemistry , Patents as Topic , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
3.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34681194

ABSTRACT

The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.

SELECTION OF CITATIONS
SEARCH DETAIL
...