Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(23): eadg0330, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37285422

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern challenge the efficacy of approved vaccines, emphasizing the need for updated spike antigens. Here, we use an evolutionary-based design aimed at boosting protein expression levels of S-2P and improving immunogenic outcomes in mice. Thirty-six prototype antigens were generated in silico and 15 were produced for biochemical analysis. S2D14, which contains 20 computationally designed mutations within the S2 domain and a rationally engineered D614G mutation in the SD2 domain, has an ~11-fold increase in protein yield and retains RBD antigenicity. Cryo-electron microscopy structures reveal a mixture of populations in various RBD conformational states. Vaccination of mice with adjuvanted S2D14 elicited higher cross-neutralizing antibody titers than adjuvanted S-2P against the SARS-CoV-2 Wuhan strain and four variants of concern. S2D14 may be a useful scaffold or tool for the design of future coronavirus vaccines, and the approaches used for the design of S2D14 may be broadly applicable to streamline vaccine discovery.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Viral , Neutralization Tests , Cryoelectron Microscopy
2.
Nat Commun ; 12(1): 559, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495478

ABSTRACT

Broadly neutralizing antibodies (bnAbs) targeting conserved influenza A virus (IAV) hemagglutinin (HA) epitopes can provide valuable information for accelerating universal vaccine designs. Here, we report structural details for heterosubtypic recognition of HA from circulating and emerging IAVs by the human antibody 3I14. Somatic hypermutations play a critical role in shaping the HCDR3, which alone and uniquely among VH3-30 derived antibodies, forms contacts with five sub-pockets within the HA-stem hydrophobic groove. 3I14 light-chain interactions are also key for binding HA and contribute a large buried surface area spanning two HA protomers. Comparison of 3I14 to bnAbs from several defined classes provide insights to the bias selection of VH3-30 antibodies and reveals that 3I14 represents a novel structural solution within the VH3-30 repertoire. The structures reported here improve our understanding of cross-group heterosubtypic binding activity, providing the basis for advancing immunogen designs aimed at eliciting a broadly protective response to IAV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Epitopes/chemistry , Epitopes/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A virus/metabolism , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology
3.
Bioorg Med Chem ; 25(11): 2901-2916, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28236510

ABSTRACT

The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, ß-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and fatty acid synthase-thioesterase (FAS-TE) enabling a new approach for the development of drug-candidates with potential to overcome resistance.


Subject(s)
Fatty Acid Synthases/antagonists & inhibitors , Lactones/pharmacology , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fatty Acid Synthases/metabolism , HeLa Cells , Humans , Lactones/chemistry , MCF-7 Cells , Molecular Structure , Orlistat , Peptides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...