Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1382552, 2024.
Article in English | MEDLINE | ID: mdl-38835509

ABSTRACT

The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.

2.
Biomolecules ; 13(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36830648

ABSTRACT

Successful embryo implantation into a receptive endometrium requires mutual endometrial-embryo communication. Recently, the function of extracellular vehicles (EVs) in cell-to-cell interaction in embryo-maternal interactions has been investigated. We explored isolated endometrial-derived EVs, using RL95-2 cells as a model of a receptive endometrium, influenced by the menstrual cycle hormones estrogen (E2; proliferative phase), progesterone (P4; secretory phase), and estrogen plus progesterone (E2P4; the receptive phase). EV sized particles were isolated by differential centrifugation and size exclusion chromatography. Nanoparticle tracking analysis was used to examine the different concentrations and sizes of particles and EV proteomic analysis was performed using shotgun label-free mass spectrometry. Our results showed that although endometrial derived EVs were secreted in numbers independent of hormonal stimulation, EV sizes were statistically modified by it. Proteomics analysis showed that hormone treatment changes affect the endometrial EV's proteome, with proteins enhanced within the EV E2P4 group shown to be involved in different processes, such as embryo implantation, endometrial receptivity, and embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs.


Subject(s)
Extracellular Vesicles , Progesterone , Female , Humans , Progesterone/metabolism , Proteome/metabolism , Proteomics/methods , Endometrium/metabolism , Extracellular Vesicles/metabolism , Estrogens/metabolism
3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555686

ABSTRACT

Overlapping disease aetiologies associated with multiple altered biological processes have been identified that change the endometrial function leading to recurrent implantation failure (RIF) and recurrent early pregnancy loss (REPL). We aimed to provide a detailed insight into the nature of the biological malfunction and related pathways of differentially expressed genes in RIF and REPL. Endometrial biopsies were obtained from 9 women experiencing RIF, REPL and control groups. Affymetrix microarray analysis was performed to measure the gene expression level of the endometrial biopsies. Unsupervised clustering of endometrial samples shows scattered distribution of gene expression between the RIF, REPL and control groups. 2556 and 1174 genes (p value < 0.05, Fold change > 1.2) were significantly altered in the endometria of RIF and REPL patients' group, respectively compared to the control group. Downregulation in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the differentially expressed genes (DEGs) in RIF and REPL including ribosome and oxidative phosphorylation pathways. Gene Ontology (GO) analysis revealed ribosomes and mitochondria inner membrane as the most significantly downregulated cellular component (CC) affected in RIF and REPL. Determination of the dysregulated genes and related biological pathways in RIF and REPL will be key in understanding their molecular pathology and of major importance in addressing diagnosis, prognosis, and treatment issues


Subject(s)
Abortion, Habitual , Transcriptome , Pregnancy , Humans , Female , Embryo Implantation/genetics , Abortion, Habitual/metabolism , Embryo Loss/pathology , Endometrium/metabolism
4.
Reprod Biol ; 22(2): 100645, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35594727

ABSTRACT

Extracellular vesicles (EVs) are small, nanometre sized, membrane-enclosed structures released by cells and are thought to be crucial in cellular communication. The cargo of these vesicles includes lipids, proteins, RNAs and DNA, and control various biological processes in their target tissues depending on the parental and receiver cell's origin and phenotype. Recently data has accumulated in the role of EVs in embryo implantation and pregnancy, with EVs identified in the uterine cavity of women, sheep, cows, horses, and mice, in which they aid blastocyst and endometrial preparation for implantation. Herein is a critical review to decipher the role of extracellular vesicles in endometrial receptivity and their potential in reproductive therapies and diagnosis. The current knowledge of the function of embryo and endometrial derived EVs and their cargoes, with regards to their effect on implantation and receptivity are summarized and evaluated. The findings of the below review highlight that the combined knowledge on EVs deriving from the endometrium and embryo have the potential to be translated to various clinical applications including treatment, a diagnostic biomarker for diseases and a drug delivery tool to ultimately improve pregnancy rates.


Subject(s)
Endometrium , Extracellular Vesicles , Animals , Cattle , Embryo Implantation , Embryo, Mammalian/metabolism , Endometrium/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Horses , Humans , Mice , Pregnancy , Sheep , Uterus
5.
Cancers (Basel) ; 13(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946867

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton's tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.

6.
Article in English | MEDLINE | ID: mdl-32984077

ABSTRACT

Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.


Subject(s)
Picornaviridae Infections , Pulmonary Disease, Chronic Obstructive , Virus Diseases , Animals , Humans , Mice , Mice, Inbred C57BL , Nuclear Proteins , Rhinovirus , Ubiquitin-Protein Ligases/genetics
7.
Blood Adv ; 4(18): 4382-4392, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32926124

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-ß expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-ß/δ. Treatment with the selective PI3K-ß/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Phosphatidylinositol 3-Kinase , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases/genetics
8.
Cancers (Basel) ; 12(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455989

ABSTRACT

Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.

9.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019190

ABSTRACT

Lymphoma, a group of widely prevalent hematological malignancies of lymphocyte origin, has become the focus of significant clinical research due to their high propensity for refractory/relapsed (R/R) disease, leading to poor prognostic outcomes. The complex molecular circuitry in lymphomas, especially in the aggressive phenotypes, has made it difficult to find a therapeutic option that can salvage R/R disease. Furthermore, the association of lymphomas with the Bone Marrow (BM) microenvironment has been found to portend worse outcomes in terms of heightened chances of relapse and acquired resistance to chemotherapy. This review assesses the current therapy options in three distinct types of lymphomas: diffuse large B-cell lymphoma, follicular lymphoma and mantle cell lymphoma. It also explores the role of the BM tumor microenvironment as a secure 'niche' for lymphoma cells to grow, proliferate and survive. It further evaluates potential mechanisms through which the tumor cells can establish molecular connections with the BM cells to provide pro-tumor benefits, and discusses putative therapeutic strategies for disrupting the BM-lymphoma cell communication.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Marrow/pathology , Drug Resistance, Neoplasm , Lymphoma, B-Cell/pathology , Tumor Microenvironment/immunology , Bone Marrow/drug effects , Bone Marrow/immunology , Humans , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/immunology , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...