Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
2.
Health Equity ; 7(1): 333-337, 2023.
Article in English | MEDLINE | ID: mdl-37284533

ABSTRACT

The Department of Veterans Affairs (VA) initiative to enhance recruitment of diverse biomedical scientists from Historically Black Colleges and Universities (HBCUs) through the VA Career Development Program has provided a unique opportunity for HBCUs to partner with VA to strengthen diversity recruitment efforts. The Atlanta VA Health Care System and the Morehouse School of Medicine (MSM) enjoy a productive and growing interinstitutional collaboration. The partnership between the Atlanta VA and MSM provides the unique opportunity for MSM to increase research opportunities for faculty and students while providing a pipeline of diverse candidates for the Atlanta VA to enhance recruitment of diverse HCBU biomedical scientists. This relationship led to the creation of an inaugural HBCU Core Recruitment Site (CRS) at MSM and the Atlanta VA. The CRS provides a pathway to identify and recruit young diverse investigators who are eligible to compete for VA Career Development Award funding. This Atlanta VA/MSM CRS initiative established a pipeline program to further enhance diversity in the VA scientific workforce. In this review, the Atlanta VA/MSM CRS is presented as a potential model for maximizing the VA initiative to enhance the recruitment of diverse candidates from HBCUs.

3.
Alcohol ; 106: 30-43, 2023 02.
Article in English | MEDLINE | ID: mdl-36328183

ABSTRACT

Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPß)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPß expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPß expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPß, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPß and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.


Subject(s)
Ethanol , Macrophages, Alveolar , MicroRNAs , RNA Processing, Post-Transcriptional , Animals , Mice , Alcoholism/drug therapy , Alcoholism/genetics , Ethanol/adverse effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
4.
Sci Rep ; 12(1): 22076, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543902

ABSTRACT

Enteric neuron degeneration has been observed during aging, and in individuals with metabolic dysfunction including obesity and diabetes. Honokiol, a naturally occurring compound, is an activator of Sirtuin-3 (SIRT3) that has antioxidant activity. Its role in modulating enteric neuron-specific neurodegeneration is unknown. We studied the effects of honokiol and its fluorinated analog, hexafluoro-honokiol, on enteric neuronal differentiation and survival. We used a previously established model of mouse primary enteric neuronal cells and an enteric neuronal cell line treated with palmitate (PA) and lipopolysaccharide (LPS) to induce mitochondrial dysfunction and enteric neuronal cell death. The effect of honokiol and hexafluoro-honokiol was assessed on neuronal phenotype, fiber density, differentiation, and pyroptosis. Honokiol and hexafluoro-honokiol significantly increased neuronal networks and fiber density in enteric neurons and increased levels of neuronal nitric oxide synthase and Choline acetyltransferase mRNA. Hexafluoro-honokiol and honokiol also significantly increased SIRT3 mRNA levels and suppressed palmitate and LPS-induced neuronal pyroptosis. SIRT3 knock-down prevented the hexafluoro-honokiol mediated suppression of mitochondrial superoxide release. Our data supports a neuroprotective effect of honokiol and its derivative and these could be used as prophylactic or therapeutic agents for treating enteric neurodegeneration and associated motility disorders.


Subject(s)
Enteric Nervous System , Sirtuin 3 , Animals , Mice , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Cell Differentiation/genetics , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Lipopolysaccharides/pharmacology , Neurons/metabolism , Palmitates/pharmacology , Sirtuin 3/genetics , Sirtuin 3/metabolism
5.
Sci Rep ; 12(1): 15838, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151131

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is associated with increased oxidative stress that leads to hepatocyte and mitochondrial damage. In this study we investigated the mechanisms involved in the induction of oxidative stress and impairment of mitochondrial quality control and mitophagy in hepatocytes by the saturated fatty acid palmitate and Western diet feeding in mice and if their harmful effects could be reversed by the neurotrophic factor glial cell derived neurotrophic factor (GDNF). Western diet (WD)-feeding increased hepatic lipid peroxidation in control mice and, in vitro palmitate induced oxidative stress and impaired the mitophagic clearance of damaged mitochondria in hepatocytes. This was accompanied by reductions in hepatocyte sirtuin 3 (SIRT3) deacetylase activity, gene expression and protein levels as well as in superoxide dismutase enzyme activity. These reductions were reversed in the liver of Western diet fed GDNF transgenic mice and in hepatocytes exposed to palmitate in the presence of GDNF. We demonstrate an important role for Western diet and palmitate in inducing oxidative stress and impairing mitophagy in hepatocytes and an ability of GDNF to prevent this. These findings suggest that GDNF or its agonists may be a potential therapy for the prevention or treatment of NAFLD.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Sirtuin 3 , Animals , Diet, High-Fat , Diet, Western/adverse effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Hepatocytes/metabolism , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Palmitates/adverse effects , Sirtuin 3/genetics , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
6.
Pathogens ; 11(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35215060

ABSTRACT

The innate immune response to P. aeruginosa pulmonary infections relies on a network of pattern recognition receptors, including intracellular inflammasome complexes, which can recognize both pathogen- and host-derived signals and subsequently promote downstream inflammatory signaling. Current evidence suggests that the inflammasome does not contribute to bacterial clearance and, in fact, that dysregulated inflammasome activation is harmful in acute and chronic P. aeruginosa lung infection. Given the role of mitochondrial damage signals in recruiting inflammasome signaling, we investigated whether mitochondrial-targeted therapies could attenuate inflammasome signaling in response to P. aeruginosa and decrease pathogenicity of infection. In particular, we investigated the small molecule, ZLN005, which transcriptionally activates peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration. We demonstrate that P. aeruginosa infection promotes the expression of inflammasome components and attenuates several components of mitochondrial repair pathways in vitro in lung epithelial cells and in vivo in an acute pneumonia model. ZLN005 activates PGC-1α and its downstream effector, Sirtuin 3 (SIRT3), a mitochondrial-localized deacetylase important for cellular metabolic processes and for reactive oxygen species homeostasis. ZLN005 also attenuates inflammasome signaling induced by P. aeruginosa in bronchial epithelial cells and this action is dependent on ZLN005 activation of SIRT3. ZLN005 treatment reduces epithelial-barrier dysfunction caused by P. aeruginosa and decreases pathogenicity in an in vivo pneumonia model. Therapies that activate the PGC-1α-SIRT3 axis may provide a complementary approach in the treatment of P. aeruginosa infection.

8.
J Immunol ; 207(2): 483-492, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34193599

ABSTRACT

Alcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function. To investigate the underlying mechanisms of these alcohol-induced AM derangements, we hypothesized that alcohol stimulates CCAAT/enhancer-binding protein ß (C/EBPß) to suppress Nox-related microRNAs (miRs), thereby enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. Furthermore, we postulated that pharmacologic PPARγ activation with pioglitazone would inhibit C/EBPß and attenuate alcohol-induced AM dysfunction. AM isolated from human AUD subjects or otherwise healthy control subjects were examined. Compared with control AM, alcohol activated AM C/EBPß, decreased Nox1-related miR-1264 and Nox2-related miR-107, and increased Nox1, Nox2, and Nox4 expression and activity. These alcohol-induced AM derangements were abrogated by inhibition of C/EBPß, overexpression of miR-1264 or miR-107, or pioglitazone treatment. These findings define novel molecular mechanisms of alcohol-induced AM dysfunction mediated by C/EBPß and Nox-related miRs that are amenable to therapeutic targeting with PPARγ ligands. These results demonstrate that PPARγ ligands provide a novel and rapidly translatable strategy to mitigate susceptibility to respiratory infections and related morbidity in individuals with AUD.


Subject(s)
Alcoholism/drug therapy , Alcoholism/metabolism , Ethanol/adverse effects , Macrophages, Alveolar/drug effects , Phagocytes/drug effects , Pioglitazone/pharmacology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Humans , Lung/drug effects , Lung/metabolism , Macrophages, Alveolar/metabolism , Male , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , PPAR gamma/metabolism , Phagocytes/metabolism
10.
Blood Adv ; 5(2): 399-413, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33496741

ABSTRACT

Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.


Subject(s)
Anemia, Sickle Cell , Hypertension, Pulmonary , Anemia, Sickle Cell/genetics , Animals , Cell Proliferation , Endothelial Cells , Mice , NF-kappa B , PPAR gamma/genetics
11.
J Biol Chem ; 295(52): 18051-18064, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33082140

ABSTRACT

Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 µg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 µg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98.


Subject(s)
Airway Remodeling , Fibroblasts/pathology , Gene Expression Regulation/drug effects , MicroRNAs/genetics , Nerve Growth Factor/metabolism , Nicotine/toxicity , Respiratory Hypersensitivity/pathology , Animals , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factor/genetics , Nicotinic Agonists/toxicity , PPAR gamma , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism
12.
Clin Sci (Lond) ; 134(14): 1911-1934, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32537652

ABSTRACT

Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.


Subject(s)
Cystic Fibrosis/metabolism , PPAR gamma/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/physiology , Unfolded Protein Response , A549 Cells , Aryldialkylphosphatase/metabolism , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Host-Pathogen Interactions , Humans , Immunity, Innate , Interleukin-8/metabolism , Mitochondria/metabolism , PPAR gamma/agonists , Pioglitazone , Pseudomonas Infections/immunology , Transcription Factor CHOP/metabolism , beta-Defensins/metabolism
13.
Sci Rep ; 10(1): 280, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937874

ABSTRACT

Chronic hypoxia leads to pathologic remodeling of the pulmonary vasculature and pulmonary hypertension (PH). The antioxidant enzyme extracellular superoxide dismutase (SOD3) protects against hypoxia-induced PH. Hyaluronan (HA), a ubiquitous glycosaminoglycan of the lung extracellular matrix, is rapidly recycled at sites of vessel injury and repair. We investigated the hypothesis that SOD3 preserves HA homeostasis by inhibiting oxidative and enzymatic hyaluronidase-mediated HA breakdown. In SOD3-deficient mice, hypoxia increased lung hyaluronidase expression and activity, hyaluronan fragmentation, and effacement of HA from the vessel wall of small pulmonary arteries. Hyaluronan fragmentation corresponded to hypoxic induction of the cell surface hyaluronidase-2 (Hyal2), which was localized in the vascular media. Human pulmonary artery smooth muscle cells (HPASMCs) demonstrated hypoxic induction of Hyal2 and SOD-suppressible hyaluronidase activity, congruent to our observations in vivo. Fragmentation of homeostatic high molecular weight HA promoted HPASMC proliferation in vitro, whereas pharmacologic inhibition of hyaluronidase activity prevented hypoxia- and oxidant-induced proliferation. Hypoxia initiates SOD3-dependent alterations in the structure and regulation of hyaluronan in the pulmonary vascular extracellular matrix. These changes occurred soon after hypoxia exposure, prior to appearance of PH, and may contribute to the early pathogenesis of this disease.


Subject(s)
Hyaluronic Acid/metabolism , Hypertension, Pulmonary/pathology , Hypoxia , Animals , Cell Hypoxia , Cell Proliferation/drug effects , Female , Humans , Hyaluronic Acid/analysis , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Hypertension, Pulmonary/metabolism , Lung/enzymology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/enzymology , Superoxide Dismutase/deficiency , Superoxide Dismutase/genetics , Up-Regulation
14.
Sci Rep ; 9(1): 11929, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417101

ABSTRACT

The pathogenicity of P. aeruginosa is dependent on quorum sensing (QS), an inter-bacterial communication system that can also modulate host biology. The innate immune function of the lung mucosal barrier is dependent on proper mitochondrial function. The purpose of this study was to define the mechanism by which bacterial factors modulate host lung epithelial cell mitochondrial function and to investigate novel therapies that ameliorate this effect. 3-oxo-C12-HSL disrupts mitochondrial morphology, attenuates mitochondrial bioenergetics, and induces mitochondrial DNA oxidative injury. Mechanistically, we show that 3-oxo-C12-HSL attenuates expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration, and its downstream effectors in both BEAS-2B and primary lung epithelial cells. Overexpression of PGC-1α attenuates the inhibition in cellular respiration caused by 3-oxo-C12-HSL. Pharmacologic activation of PGC-1α restores barrier integrity in cells treated with 3-oxo-C12-HSL. These data demonstrate that the P. aeruginosa QS molecule, 3-oxo-C12-HSL, alters mitochondrial pathways critical for lung mucosal immunity. Genetic and pharmacologic strategies that activate the PGC-1α pathway enhance host epithelial cell mitochondrial function and improve the epithelial innate response to P. aeruginosa. Therapies that rescue PGC-1α function may provide a complementary approach in the treatment of P. aeruginosa infection.


Subject(s)
Epithelial Cells/microbiology , Host-Pathogen Interactions , Mitochondria/pathology , Pseudomonas aeruginosa/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Apoptosis/drug effects , Bronchi/pathology , Cell Line , Cell Respiration/drug effects , DNA Damage , DNA, Mitochondrial/genetics , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Homoserine/analogs & derivatives , Homoserine/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Metformin/pharmacology , Mitochondria/drug effects , Models, Biological , Organelle Biogenesis , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology
15.
Hepatology ; 69(6): 2455-2470, 2019 06.
Article in English | MEDLINE | ID: mdl-30715741

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy. Here we investigated the effects of GDNF on hepatic autophagy in response to increased fat load, and on hepatocyte mitochondrial fatty acid ß-oxidation and cell survival. GDNF not only prevented the reductions in the liver levels of some key autophagy-related proteins, including Atg5, Atg7, Beclin-1 and LC3A/B-II, seen in HFD-fed control mice, but enhanced their levels after 12 weeks of HFD feeding. In vitro, GDNF accelerated autophagic cargo clearance in primary mouse hepatocytes and a rat hepatocyte cell line, and reduced the phosphorylation of the mechanistic target of rapamycin complex downstream-target p70S6 kinase similar to the autophagy activator rapamycin. GDNF also enhanced mitochondrial fatty acid ß-oxidation in primary mouse and rat hepatocytes, and protected against palmitate-induced lipotoxicity. Conclusion: We demonstrate a role for GDNF in enhancing hepatic autophagy and in potentiating mitochondrial function and fatty acid oxidation. Our studies show that GDNF and its receptor agonists could be useful for enhancing hepatocyte survival and protecting against fatty acid-induced hepatic lipotoxicity.


Subject(s)
Autophagy/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Hepatocytes/metabolism , Lipogenesis/genetics , Non-alcoholic Fatty Liver Disease/pathology , Palmitates/metabolism , Animals , Cell Death , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Hep G2 Cells/cytology , Hep G2 Cells/metabolism , Hepatocytes/cytology , Humans , Lipolysis/drug effects , Male , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/metabolism , Oxygen Consumption/physiology , Random Allocation , Rats , Sensitivity and Specificity , Signal Transduction , Sirolimus/pharmacology
16.
Antioxid Redox Signal ; 31(12): 874-897, 2019 10 20.
Article in English | MEDLINE | ID: mdl-30582337

ABSTRACT

Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.


Subject(s)
Down-Regulation , Hypertension, Pulmonary/metabolism , Oxidation-Reduction , PPAR gamma/metabolism , Animals , Gene Expression Regulation , Humans , Hypertension, Pulmonary/genetics , MicroRNAs/genetics , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Signal Transduction , Transcription Factors/metabolism
17.
Pulm Circ ; 8(3): 2045894018788267, 2018.
Article in English | MEDLINE | ID: mdl-29927354

ABSTRACT

Pulmonary hypertension (PH) is a clinical disorder characterized by sustained increases in pulmonary vascular resistance and pressure that can lead to right ventricular (RV) hypertrophy and ultimately RV failure and death. The molecular pathogenesis of PH remains incompletely defined, and existing treatments are associated with suboptimal outcomes and persistent morbidity and mortality. Reports have suggested a role for the ubiquitin proteasome system (UPS) in PH, but the extent of UPS-mediated non-proteolytic protein alterations during PH pathogenesis has not been previously defined. To further examine UPS alterations, the current study employed C57BL/6J mice exposed to normoxia or hypoxia for 3 weeks. Lung protein ubiquitination was evaluated by mass spectrometry to identify differentially ubiquitinated proteins relative to normoxic controls. Hypoxia stimulated differential ubiquitination of 198 peptides within 131 proteins ( p < 0.05). These proteins were screened to identify candidates within pathways involved in PH pathogenesis. Some 51.9% of the differentially ubiquitinated proteins were implicated in at least one known pathway contributing to PH pathogenesis, and 13% were involved in three or more PH pathways. Anxa2, App, Jak1, Lmna, Pdcd6ip, Prkch1, and Ywhah were identified as mediators in PH pathways that undergo differential ubiquitination during PH pathogenesis. To our knowledge, this is the first study to report global changes in protein ubiquitination in the lung during PH pathogenesis. These findings suggest signaling nodes that are dynamically regulated by the UPS during PH pathogenesis. Further exploration of these differentially ubiquitinated proteins and related pathways can provide new insights into the role of the UPS in PH pathogenesis.

18.
Am J Respir Cell Mol Biol ; 58(5): 648-657, 2018 05.
Article in English | MEDLINE | ID: mdl-29182484

ABSTRACT

Pulmonary hypertension (PH) is a progressive disorder that causes significant morbidity and mortality despite existing therapies. PH pathogenesis is characterized by metabolic derangements that increase pulmonary artery smooth muscle cell (PASMC) proliferation and vascular remodeling. PH-associated decreases in peroxisome proliferator-activated receptor γ (PPARγ) stimulate PASMC proliferation, and PPARγ in coordination with PPARγ coactivator 1α (PGC1α) regulates mitochondrial gene expression and biogenesis. To further examine the impact of decreases in PPARγ expression on human PASMC (HPASMC) mitochondrial function, we hypothesized that depletion of either PPARγ or PGC1α perturbs mitochondrial structure and function to stimulate PASMC proliferation. To test this hypothesis, HPASMCs were exposed to hypoxia and treated pharmacologically with the PPARγ antagonist GW9662 or with siRNA against PPARγ or PGC1α for 72 hours. HPASMC proliferation (cell counting), target mRNA levels (qRT-PCR), target protein levels (Western blotting), mitochondria-derived H2O2 (confocal immunofluorescence), mitochondrial mass and fragmentation, and mitochondrial bioenergetic profiling were determined. Hypoxia or knockdown of either PPARγ or PGC1α increased HPASMC proliferation, enhanced mitochondria-derived H2O2, decreased mitochondrial mass, stimulated mitochondrial fragmentation, and impaired mitochondrial bioenergetics. Taken together, these findings provide novel evidence that loss of PPARγ diminishes PGC1α and stimulates derangements in mitochondrial structure and function that cause PASMC proliferation. Overexpression of PGC1α reversed hypoxia-induced HPASMC derangements. This study identifies additional mechanistic underpinnings of PH, and provides support for the notion of activating PPARγ as a novel therapeutic strategy in PH.


Subject(s)
Hypertension, Pulmonary/metabolism , Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , PPAR gamma/metabolism , Anilides/pharmacology , Animals , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/prevention & control , Mice, Inbred C57BL , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , RNA Interference
19.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L371-L383, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28522568

ABSTRACT

Pulmonary hypertension (PH) is a progressive disorder whose cellular pathogenesis involves enhanced smooth muscle cell (SMC) proliferation and resistance to apoptosis signals. Existing evidence demonstrates that the tumor suppressor programmed cell death 4 (PDCD4) affects patterns of cell growth and repair responses in the systemic vasculature following experimental injury. In the current study, the regulation PDCD4 and its functional effects on growth and apoptosis susceptibility in pulmonary artery smooth muscle cells were explored. We previously demonstrated that pharmacological activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) attenuated hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting the expression and mitogenic functions of microRNA-21 (miR-21). In the current study, we hypothesize that PPARγ stimulates PDCD4 expression and HPASMC apoptosis by inhibiting miR-21. Our findings demonstrate that PDCD4 is reduced in the mouse lung upon exposure to chronic hypoxia (10% O2 for 3 wk) and in hypoxia-exposed HPASMCs (1% O2). HPASMC apoptosis was reduced by hypoxia, by miR-21 overexpression, or by siRNA-mediated PPARγ and PDCD4 depletion. Activation of PPARγ inhibited miR-21 expression and resultant proliferation, while restoring PDCD4 levels and apoptosis to baseline. Additionally, pharmacological activation of PPARγ with rosiglitazone enhanced PDCD4 protein expression and apoptosis in a dose-dependent manner as demonstrated by increased annexin V detection by flow cytometry. Collectively, these findings demonstrate that PPARγ confers growth-inhibitory signals in hypoxia-exposed HPASMCs through suppression of miR-21 and the accompanying derepression of PDCD4 that augments HPASMC susceptibility to undergo apoptosis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , MicroRNAs/metabolism , Myocytes, Smooth Muscle/metabolism , PPAR gamma/metabolism , Pulmonary Artery/metabolism , RNA-Binding Proteins/metabolism , Animals , Annexin A5/genetics , Annexin A5/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocytes, Smooth Muscle/drug effects , PPAR gamma/genetics , Pulmonary Artery/drug effects , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Rosiglitazone , Signal Transduction/drug effects , Signal Transduction/genetics , Thiazolidinediones/pharmacology
20.
FASEB J ; 31(8): 3608-3621, 2017 08.
Article in English | MEDLINE | ID: mdl-28442545

ABSTRACT

Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor γ (PPARγ) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARγ expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARγ agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARγ agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARγ agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARγ in host defense against P. aeruginosa Strategies that activate PPARγ can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-Bedi, B., Maurice, N. M., Ciavatta, V. T., Lynn, K. S., Yuan, Z., Molina, S. A., Joo, M., Tyor, W. R., Goldberg, J. B., Koval, M., Hart, C. M., Sadikot, R. T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa.


Subject(s)
Bacterial Proteins/pharmacology , Biofilms/growth & development , PPAR gamma/agonists , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Cell Line , Epithelial Cells/microbiology , Gene Expression Regulation/physiology , Humans , Mutation , Pseudomonas aeruginosa/genetics , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL
...