Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(34): 6969-6978, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37581904

ABSTRACT

Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes derived from five different sized macrocycles in the size range of 40-48 atoms and two different stopper groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stability examined. These interlocked compounds were synthesized using a metal-templated approach and fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded interlocked molecules could be accessed in which the rate of room temperature slippage of the macrocycle from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no observable rotaxane, 46-44 atom macrocycles result in metastable rotaxane species with a slippage half-life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but metastable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macrocycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic groundwork for a range of higher order doubly threaded interlocked architectures.

2.
J Am Chem Soc ; 145(22): 12315-12323, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37227296

ABSTRACT

Crosslinking in polymer networks leads to intrinsic structural inhomogeneities that result in brittle materials. Replacing fixed covalent crosslinks with mobile ones in mechanically interlocked polymers (MIPs), such as in slide-ring networks (SRNs) in which interlocked crosslinks are formed when polymer chains are threaded through crosslinked rings, can lead to tougher, more robust networks. An alternative class of MIPs is the polycatenane network (PCN), in which the covalent crosslinks are replaced with interlocked rings that introduce the unusual catenane's mobility elements (elongation, rotation, and twisting) as connections between polymer chains. A slide-ring polycatenane network (SR-PCN), with doubly threaded rings embedded as crosslinks in a covalent network, combines the mobility features of both the SRNs and PCNs, where the catenated ring crosslinks can slide along the polymer backbone between the two limits of network bonding (covalent and interlocked). This work explores using a metal ion-templated doubly threaded pseudo[3]rotaxane (P3R) crosslinker, combined with a covalent crosslinker and a chain extender, to access such networks. A catalyst-free nitrile-oxide/alkyne cycloaddition polymerization was used to vary the ratio of P3R and covalent crosslinker to yield a series of SR-PCNs that vary in the amount of interlocked crosslinking units. Studies on their mechanical properties show that metal ions fix the rings in the network, leading to similar behavior as the covalent PEG gels. Removal of the metal ion frees the rings resulting in a high-frequency transition attributed to the additional relaxation of polymer chains through the catenated rings while also increasing the rate of poroelastic draining at longer timescales.

3.
Chem Sci ; 13(18): 5333-5344, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35655545

ABSTRACT

Ring size is a critically important parameter in many interlocked molecules as it directly impacts many of the unique molecular motions that they exhibit. Reported herein are studies using one of the largest macrocycles reported to date to synthesize doubly threaded [3]rotaxanes. A large ditopic 46 atom macrocycle containing two 2,6-bis(N-alkyl-benzimidazolyl)pyridine ligands has been used to synthesize several metastable doubly threaded [3]rotaxanes in high yield (65-75% isolated) via metal templating. Macrocycle and linear thread components were synthesized and self-assembled upon addition of iron(ii) ions to form the doubly threaded pseudo[3]rotaxanes that could be subsequently stoppered using azide-alkyne cycloaddition chemistry. Following demetallation with base, these doubly threaded [3]rotaxanes were fully characterized utilizing a variety of NMR spectroscopy, mass spectrometry, size-exclusion chromatography, and all-atom simulation techniques. Critical to the success of accessing a metastable [3]rotaxane with such a large macrocycle was the nature of the stopper group employed. By varying the size of the stopper group it was possible to access metastable [3]rotaxanes with stabilities in deuterated chloroform ranging from a half-life of <1 minute to ca. 6 months at room temperature potentially opening the door to interlocked materials with controllable degradation rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...