Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1350796, 2024.
Article in English | MEDLINE | ID: mdl-38510703

ABSTRACT

Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ substantially between individuals. Multi-omics analyses may allow a deeper understanding of these differences and ultimately facilitate personalised treatments. Here, in an unsupervised "bottom-up" approach, we attempt to group T2D patients based solely on -omics data generated from plasma. Methods: Circulating plasma lipidomic and proteomic data from two independent clinical cohorts, Hoorn Diabetes Care System (DCS) and Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS), were analysed using Similarity Network Fusion. The resulting patient network was analysed with Logistic and Cox regression modelling to explore relationships between plasma -omic profiles and clinical characteristics. Results: From a total of 1,134 subjects in the two cohorts, levels of 180 circulating plasma lipids and 1195 proteins were used to separate patients into two subgroups. These differed in terms of glycaemic deterioration (Hazard Ratio=0.56;0.73), insulin sensitivity and secretion (C-peptide, p=3.7e-11;2.5e-06, DCS and GoDARTS, respectively; Homeostatic model assessment 2 (HOMA2)-B; -IR; -S, p=0.0008;4.2e-11;1.1e-09, only in DCS). The main molecular signatures separating the two groups included triacylglycerols, sphingomyelin, testican-1 and interleukin 18 receptor. Conclusions: Using an unsupervised network-based fusion method on plasma lipidomics and proteomics data from two independent cohorts, we were able to identify two subgroups of T2D patients differing in terms of disease severity. The molecular signatures identified within these subgroups provide insights into disease mechanisms and possibly new prognostic markers for T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/metabolism , Proteomics , Multiomics
2.
Lancet Diabetes Endocrinol ; 11(1): 33-41, 2023 01.
Article in English | MEDLINE | ID: mdl-36528349

ABSTRACT

BACKGROUND: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. METHODS: In this genome-wide analysis we included adults (aged ≥18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. FINDINGS: 4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G→A (Gly168Ser) in the GLP1R (0·08% [95% CI 0·04-0·12] or 0·9 mmol/mol lower reduction in HbA1c per serine, p=6·0 × 10-5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6·7 × 10-8), largely driven by rs140226575G→A (Thr370Met; 0·25% [SE 0·06] or 2·7 mmol/mol  [SE 0·7] greater HbA1c reduction per methionine, p=5·2 × 10-6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6-11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. INTERPRETATION: This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists. FUNDING: Innovative Medicines Initiative and the Wellcome Trust.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Adult , Female , Humans , Adolescent , Male , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/agonists , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Hypoglycemic Agents/therapeutic use , Genome-Wide Association Study , Pharmacogenetics , Treatment Outcome , Blood Glucose , Randomized Controlled Trials as Topic
3.
Obesity (Silver Spring) ; 22(5): 1309-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24339435

ABSTRACT

OBJECTIVE: Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodeling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here, the association of human hepatic SULF2 expression and SULF2 gene variants with TG metabolism in patients with obesity and/or T2DM was investigated. METHODS: Liver biopsies from 121 obese subjects were analyzed for relations between hepatic SULF2 mRNA levels and plasma TG. Associations between seven SULF2 tagSNPs and TG levels were assessed in 210 obese T2DM subjects with dyslipidemia. Replication of positive findings was performed in 1,316 independent obese T2DM patients. Postprandial TRL clearance was evaluated in 29 obese T2DM subjects stratified by SULF2 genotype. RESULTS: Liver SULF2 expression was significantly associated with fasting plasma TG (r = 0.271; P = 0.003) in obese subjects. The SULF2 rs2281279(A>G) SNP was reproducibly associated with lower fasting plasma TG levels in obese T2DM subjects (P < 0.05). Carriership of the minor G allele was associated with lower levels of postprandial plasma TG (P < 0.05) and retinyl esters levels (P < 0.001). CONCLUSIONS: These findings implicate SULF2 as potential therapeutic target in the atherogenic dyslipidemia of obesity and T2DM.


Subject(s)
Diabetes Mellitus, Type 2/blood , Obesity/blood , Postprandial Period , Sulfotransferases/genetics , Triglycerides/blood , Aged , Alleles , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Dyslipidemias/blood , Fasting , Female , Humans , Liver/metabolism , Male , Middle Aged , Obesity/complications , Obesity/genetics , Polymorphism, Single Nucleotide , Postmenopause/physiology , Prospective Studies , Sulfatases
4.
Eur J Endocrinol ; 169(4): 421-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23864340

ABSTRACT

OBJECTIVE: To i) compare incretin responses to oral glucose and mixed meal of diabetic patients with the normoglycaemic population and ii) to investigate whether incretin responses are associated with hypertriglyceridaemia and alanine aminotransferase (ALT) as liver fat marker. DESIGN: A population-based study. METHODS: A total of 163 persons with normal glucose metabolism (NGM), 20 with intermediate hyperglycaemia and 20 with type 2 diabetes aged 40-65 years participated. Participants received a mixed meal and oral glucose load on separate occasions. Glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon profiles were analysed as total area under the curve (tAUC) and incremental area under the curve. RESULTS: In diabetic patients compared with persons with NGM, we found increased GLP-1 secretion (tAUC per hour) following oral glucose (23.2 pmol/l (95% CI 17.7-28.7) vs 18.0 (95% CI 16.9-19.1), P<0.05) but not after the mixed meal. GIP secretion among diabetic patients was increased on both occasions (82.9 pmol/l (55.9-109.8) vs 47.1 (43.8-50.4) for oral glucose and 130.6 (92.5-168.7) vs 83.2 (77.5-88.9) for mixed meal, both P<0.05). After oral glucose, GLP-1 (tAUC per hour) was inversely related to fasting triglycerides. GIP (tAUC per hour) was positively related to fasting and postprandial triglycerides. Higher fasting GIP levels were related to higher fasting and postprandial triglyceride levels and ALT. CONCLUSION: This study confirms that in type 2 diabetes, GLP-1 secretion is generally preserved and that GIP secretion is exaggerated. The mechanism underlying the divergent associations of GLP-1 and GIP metabolism with fat metabolism and liver fat accumulation warrants further study.


Subject(s)
Alanine Transaminase/blood , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/blood , Glucagon-Like Peptide 1/blood , Triglycerides/blood , Adult , Aged , Area Under Curve , Biomarkers/blood , Eating/physiology , Female , Gastric Inhibitory Polypeptide/metabolism , Glucagon/blood , Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/administration & dosage , Glucose Tolerance Test , Humans , Incretins/blood , Lipid Metabolism/physiology , Male , Middle Aged
5.
J Clin Endocrinol Metab ; 95(12): E479-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20826583

ABSTRACT

CONTEXT: Single-nucleotide polymorphisms (SNPs) within the G6PC2 locus are associated with fasting glucose and insulin secretion. These SNPs are not associated with type 2 diabetes risk. OBJECTIVE: Our objective was to investigate whether the impact of the SNP on variables of glucose-stimulated insulin secretion is influenced by glucose tolerance status. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION: In this cross-sectional study, we genotyped 1505 healthy Caucasian subjects [normal glucose tolerance (NGT), 1098; impaired glucose tolerance (IGT)/impaired fasting glucose (IFG), 407] for SNP rs560887 within the G6PC2 locus. A subgroup of 326 subjects underwent an iv glucose tolerance test, and 512 participants took part in a hyperinsulinemic-euglycemic clamp. For replication, SNP rs560887 was genotyped in 457 subjects (NGT, 265; IGT, 192) from four independent German and Dutch studies who underwent a hyperglycemic clamp. MAIN OUTCOME MEASURE: Insulin secretion was evaluated. RESULTS: Carriers of the major G-allele exhibited increased fasting glycemia (P<0.0001). Insulin sensitivity and secretion were not associated with the SNP (P≥0.06). Glucose tolerance status and genotype interacted on insulin secretion (P=0.036), such that in NGT subjects, the minor A-allele of rs560887 was associated with decreased insulinogenic index (P=0.044), which was not the case in subjects with IFG/IGT (P=1.0). During the iv glucose tolerance test, an association of A-allele carriers with decreased first-phase insulin secretion was also observed only in NGT subjects (P=0.0053). Likewise, in the hyperglycemic clamp group, the A-allele was associated with decreased first-phase insulin secretion only in the NGT group (P=0.022) but not in the IGT group. CONCLUSIONS: The effects of hyperglycemia on insulin secretion override the more subtle effects of genetic variation in the G6PC2 locus on insulin secretion.


Subject(s)
Blood Glucose/metabolism , Genetic Variation , Glucose-6-Phosphatase/genetics , Insulin/metabolism , Polymorphism, Single Nucleotide , Adult , Carrier State , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , Fasting , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Glucose Clamp Technique , Glucose Intolerance/genetics , Glucose Tolerance Test , Humans , Insulin Secretion , Insulin-Secreting Cells/physiology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...