Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Behav Ecol ; 35(1): arad097, 2024.
Article in English | MEDLINE | ID: mdl-38550303

ABSTRACT

Aposematic prey advertise their unprofitability with conspicuous warning signals that are often composed of multiple color patterns. Many species show intraspecific variation in these patterns even though selection is expected to favor invariable warning signals that enhance predator learning. However, if predators acquire avoidance to specific signal components, this might relax selection on other aposematic traits and explain variability. Here, we investigated this idea in the aposematic moth Amata nigriceps that has conspicuous black and orange coloration. The size of the orange spots in the wings is highly variable between individuals, whereas the number and width of orange abdominal stripes remains consistent. We produced artificial moths that varied in the proportion of orange in the wings or the presence of abdominal stripes. We presented these to a natural avian predator, the noisy miner (Manorina melanocephala), and recorded how different warning signal components influenced their attack decisions. When moth models had orange stripes on the abdomen, birds did not discriminate between different wing signals. However, when the stripes on the abdomen were removed, birds chose the model with smaller wing spots. In addition, we found that birds were more likely to attack moths with a smaller number of abdominal stripes. Together, our results suggest that bird predators primarily pay attention to the abdominal stripes of A. nigriceps, and this could relax selection on wing coloration. Our study highlights the importance of considering individual warning signal components if we are to understand how predation shapes selection on prey warning coloration.

2.
PeerJ ; 12: e16645, 2024.
Article in English | MEDLINE | ID: mdl-38304190

ABSTRACT

Bluelined goatfish (Upeneichthys lineatus) rapidly change their body colour from a white horizontally banded pattern to a seemingly more conspicuous vertically banded red pattern, often when foraging. Given the apparent conspicuousness of the pattern to a range of observers, it seems unlikely that this colour change is used for camouflage and instead may be used for communication/signalling. Goatfish often drive multispecies associations, and it is possible that goatfish use this colour change as a foraging success signal to facilitate cooperation, increase food acquisition, and reduce predation risk through a 'safety in numbers' strategy. Using a novel approach, we deployed 3D model goatfish in different colour morphs-white without bands, white with black vertical bands, and white with red vertical bands-to determine whether the red colouration is an important component of the signal or if it is only the vertical banding pattern, regardless of colour, that fish respond to as an indicator of foraging success. Use of remote underwater video allowed us to obtain information without the influence of human observers on the communities and behaviours of other fish in response to these different colours exhibited by goatfish. We found that conspecifics were more abundant around the black- and red-banded model fish when compared with the white models. Conspecifics were also more likely to forage around the models than to pass or show attraction, but this was unaffected by model colour. No difference in the abundance and behaviour of associated heterospecifics around the different models was observed, perhaps due to the static nature of the models. Some species did, however, spend more time around the red- and black-banded fish, which suggests the change in colour may indicate benefits in addition to food resources. Overall, the results suggest that the body colour/pattern of U. lineatus is likely a signalling tool but further work is required to explore the benefits to both conspecifics and heterospecifics and to further determine the behavioural functions of rapid colour change in U. lineatus.


Subject(s)
Fishes , Perciformes , Animals , Humans , Color , Predatory Behavior
3.
Ecol Evol ; 13(8): e10328, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636865

ABSTRACT

Many animal species can rapidly change their body colouration and patterning, but often the ecological drivers of such changes are unknown. Here, we explored dynamic colour change in the bluelined goatfish, Upeneichthys lineatus, a temperate marine teleost species. Upeneichthus lineatus can change in a matter of seconds, from a uniform white colour to display prominent, vertical, dark red stripes. Initial observations suggested that rapid colour change in U. lineatus was associated with feeding and may act as a signal to both conspecifics and heterospecifics that are frequently observed to follow feeding goatfish. Field observations of the colour and behaviour of individual U. lineatus were collected to (1) document the repertoire of behaviours that U. lineatus displays and categorise associated colour patterns; (2) quantify the speed of dynamic colour change; (3) establish the context in which U. lineatus changes colour and pattern; and (4) test whether the behaviour of follower fishes is influenced by colour patterning or specific behaviours of the focal goatfish. We found that U. lineatus changed colouration from white to the red banded pattern in less than 10 s. The key driver of rapid colour change in U. lineatus was feeding, particularly when the fish fed with its head buried in sediment. Conspecific followers were most likely to be white in colour and adopt searching behaviour, regardless of the focal fish colour or behaviour. Other species of follower fish spent significantly more time following U. lineatus that were displaying dark red stripes when searching or eating, implying the red stripes may be an interspecific signalling mechanism. Our findings indicate that rapid colour change in teleost fish may be used for social communication and may provide U. lineatus with increased protection from predation when feeding via a safety-in-numbers approach.

4.
Article in English | MEDLINE | ID: mdl-37055584

ABSTRACT

The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity. The major workers of O. smaragdina have more ommatidia (804) in each eye compared to minor workers (508), but the facet diameters are comparable between both castes. We measured the impulse responses of the compound eye and found their response duration (42 ms) was similar to that seen in other slow-moving ants. We determined the flicker fusion frequency of the compound eye at the brightest light intensity to be 132 Hz, which is relatively fast for a walking insect suggesting the visual system is well suited for a diurnal lifestyle. Using pattern-electroretinography we identified the compound eye has a spatial resolving power of 0.5 cycles deg-1 and reached peak contrast sensitivity of 2.9 (35% Michelson contrast threshold) at 0.05 cycles deg-1. We discuss the relationship of spatial resolution and contrast sensitivity, with number of ommatidia and size of the lens.


Subject(s)
Ants , Animals , Ants/physiology , Insecta , Contrast Sensitivity , Light
5.
J Exp Biol ; 225(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35582824

ABSTRACT

Despite lizards using a wide range of colour signals, the limited variation in photoreceptor spectral sensitivities across lizards suggests only weak selection for species-specific, spectral tuning of photoreceptors. Some species, however, have enhanced short-wavelength sensitivity, which probably helps with the detection of signals rich in ultraviolet and short wavelengths. In this study, we examined the visual system of Tiliqua rugosa, which has an ultraviolet/blue tongue, to gain insight into this species' visual ecology. We used electroretinograms, opsin sequencing and immunohistochemical labelling to characterize whole-eye spectral sensitivity and the elements that shape it. Our findings reveal that T. rugosa expresses all five opsins typically found in lizards (SWS1, SWS2, RH1, RH2 and LWS) but possesses greatly enhanced short-wavelength sensitivity compared with other diurnal lizards. This enhanced short-wavelength sensitivity is characterized by a broadening of the spectral sensitivity curve of the eye towards shorter wavelengths while the peak sensitivity of the eye at longer wavelengths (560 nm) remains similar to that of other diurnal lizards. While an increased abundance of SWS1 photoreceptors is thought to mediate elevated ultraviolet sensitivity in a couple of other lizard species, SWS1 photoreceptor abundance remains low in this species. Instead, our findings suggest that short-wavelength sensitivity is driven by multiple factors which include a potentially red-shifted SWS1 photoreceptor and the absence of short-wavelength-absorbing oil droplets. Examining the coincidence of enhanced short-wavelength sensitivity with blue tongues among lizards of this genus will provide further insight into the co-evolution of conspecific signals and whole-eye spectral sensitivity.


Subject(s)
Lizards , Animals , Electroretinography , Eye , Opsins/genetics , Phylogeny
6.
Brain Behav Evol ; 96(3): 103-123, 2021.
Article in English | MEDLINE | ID: mdl-34856558

ABSTRACT

Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.


Subject(s)
Color Perception , Perciformes , Animals , Color Perception/physiology , Retinal Pigments
7.
J R Soc Interface ; 18(183): 20210533, 2021 10.
Article in English | MEDLINE | ID: mdl-34699727

ABSTRACT

Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.


Subject(s)
Bites and Stings , Sharks , Animals , Humans , Swimming
8.
J Exp Biol ; 224(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34542631

ABSTRACT

In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.


Subject(s)
Ants , Animals , Australia , Bees , Compound Eye, Arthropod , Contrast Sensitivity , Vision, Ocular
9.
J Comp Neurol ; 529(9): 2265-2282, 2021 06.
Article in English | MEDLINE | ID: mdl-33336375

ABSTRACT

Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G. australis and whether each cell type expresses a single opsin class. Five photoreceptor subtypes were identified based on ultrastructure and differential expression of one of each of the five different visual opsin classes (lws, sws1, sws2, rh1, and rh2) known to be expressed in the retina. This suggests, therefore, that the retina of G. australis possesses five spectrally and morphologically distinct photoreceptors, with the potential for complex color vision. Each photoreceptor subtype was shown to have a specific spatial distribution in the retina, which is potentially associated with changes in spectral radiance across different lines of sight. These results suggest that there have been strong selection pressures for G. australis to maintain broad spectral sensitivity for the brightly lit surface waters that this species inhabits during its marine phase. These findings provide important insights into the functional anatomy of the early vertebrate retina and the selection pressures that may have led to the evolution of complex color vision.


Subject(s)
Cone Opsins/biosynthesis , Cone Opsins/ultrastructure , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Rod Opsins/biosynthesis , Rod Opsins/ultrastructure , Animals , Cone Opsins/analysis , Fluorescent Dyes/analysis , Lampreys , Photoreceptor Cells, Vertebrate/chemistry , Rod Opsins/analysis
10.
Curr Biol ; 30(13): 2608-2615.e4, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32470360

ABSTRACT

Snakes are descended from highly visual lizards [1] but have limited (probably dichromatic) color vision attributed to a dim-light lifestyle of early snakes [2-4]. The living species of front-fanged elapids, however, are ecologically very diverse, with ∼300 terrestrial species (cobras, taipans, etc.) and ∼60 fully marine sea snakes, plus eight independently marine, amphibious sea kraits [1]. Here, we investigate the evolution of spectral sensitivity in elapids by analyzing their opsin genes (which are responsible for sensitivity to UV and visible light), retinal photoreceptors, and ocular lenses. We found that sea snakes underwent rapid adaptive diversification of their visual pigments when compared with their terrestrial and amphibious relatives. The three opsins present in snakes (SWS1, LWS, and RH1) have evolved under positive selection in elapids, and in sea snakes they have undergone multiple shifts in spectral sensitivity toward the longer wavelengths that dominate below the sea surface. Several relatively distantly related Hydrophis sea snakes are polymorphic for shortwave sensitive visual pigment encoded by alleles of SWS1. This spectral site polymorphism is expected to confer expanded "UV-blue" spectral sensitivity and is estimated to have persisted twice as long as the predicted survival time for selectively neutral nuclear alleles. We suggest that this polymorphism is adaptively maintained across Hydrophis species via balancing selection, similarly to the LWS polymorphism that confers allelic trichromacy in some primates. Diving sea snakes thus appear to share parallel mechanisms of color vision diversification with fruit-eating primates.


Subject(s)
Biological Evolution , Elapidae/physiology , Hydrophiidae/physiology , Polymorphism, Genetic , Visual Perception , Alleles , Animals , Elapidae/genetics , Evolution, Molecular , Hydrophiidae/genetics
11.
Semin Cell Dev Biol ; 106: 12-19, 2020 10.
Article in English | MEDLINE | ID: mdl-32331993

ABSTRACT

The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.


Subject(s)
Color Vision/physiology , Opsins/physiology , Animals , Fishes , Sharks , Skates, Fish
12.
J Comp Neurol ; 528(17): 2831-2847, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32227480

ABSTRACT

In this study, we investigated the visual system of the Port Jackson shark Heterodontus portusjacksoni, a shallow-dwelling benthic species and generalist predator endemic to the temperate coastal waters around southern Australia. Measurements of retinal spectral sensitivity in juvenile sharks, made using single flash and heterochromatic flicker photometry under conditions of dark- or light-adaptation, indicated a peak sensitivity at around 500 nm, with no evidence of a spectral shift with increasing levels of light adaptation. Histological sections of the retina revealed a heavily rod dominated retina containing only a few small cell profiles in the photoreceptor layer that might represent a sparse cone population or may be immature rods. Assessment of retinal topography in juvenile sharks indicated the presence of a distinct specialisation for increased visual spatial acuity in the form of a horizontal streak of higher rod photoreceptor (~80,000 rods mm-2 ) and ganglion cell (~1,800 cells mm-2 ) densities across the horizontal meridian of the eye. This specialization would be adaptive for panoramic sampling of the part of the visual field corresponding to the substrate-water interface and remove the need for H. portusjacksoni to move its eyes extensively when resting on the sea floor. The estimated upper limit of spatial resolving power in juvenile H. portusjacksoni was 3.14 cycles deg-1 , which is at the lower end of values measured in elasmobranchs. Taken together, these results suggest that the retina of H. portusjacksoni is well adapted for nocturnal vision.


Subject(s)
Adaptation, Ocular/physiology , Dark Adaptation/physiology , Photic Stimulation/methods , Retina/cytology , Retina/physiology , Sharks/physiology , Animals , Female , Male , Photometry/methods , Retina/anatomy & histology , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology
13.
Vision Res ; 169: 25-32, 2020 04.
Article in English | MEDLINE | ID: mdl-32145455

ABSTRACT

Most animals rely on vision to perform a range of behavioural tasks and variations in the anatomy and physiology of the eye likely reflect differences in habitat and life history. Moreover, eye design represents a balance between often conflicting requirements for gathering different forms of visual information. The trade-off between spatial resolving power and contrast sensitivity is common to all visual systems, and European honeybees (Apis mellifera) present an important opportunity to better understand this trade-off. Vision has been studied extensively in A. mellifera as it is vital for foraging, navigation and communication. Consequently, spatial resolving power and contrast sensitivity in A. mellifera have been measured using several methodologies; however, there is considerable variation in estimates between methodologies. We assess pattern electroretinography (pERG) as a new method for assessing the trade-off between visual spatial and contrast information in A.mellifera. pERG has the benefit of measuring spatial contrast sensitivity from higher order visual processing neurons in the eye. Spatial resolving power of A.mellifera estimated from pERG was 0.54 cycles per degree (cpd), and contrast sensitivity was 16.9. pERG estimates of contrast sensitivity were comparable to previous behavioural studies. Estimates of spatial resolving power reflected anatomical estimates in the frontal region of the eye, which corresponds to the region stimulated by pERG. Apis mellifera has similar spatial contrast sensitivity to other hymenopteran insects with similar facet diameter (Myrmecia ant species). Our results support the idea that eye anatomy has a substantial effect on spatial contrast sensitivity in compound eyes.


Subject(s)
Bees , Vision, Ocular , Visual Perception , Animals , Bees/physiology , Contrast Sensitivity
14.
J Comp Neurol ; 528(4): 542-558, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31576574

ABSTRACT

The well-studied phylogeny and ecology of dragon lizards and their range of visually mediated behaviors provide an opportunity to examine the factors that shape retinal organization. Dragon lizards consist of three evolutionarily stable groups based on their shelter type, including burrows, shrubs, and rocks. This allows us to test whether microhabitat changes are reflected in their retinal organization. We examined the retinae of three burrowing species (Ctenophorus pictus, C. gibba, and C. nuchalis), and three species that shelter in rock crevices (C. ornatus, C. decresii, and C. vadnappa). We used design-based stereology to sample both the photoreceptor array and neurons within the retinal ganglion cell layer to estimate areas specialized for acute vision. All species had two retinal specializations mediating enhanced spatial acuity: a fovea in the retinal center and a visual streak across the retinal equator. Furthermore, all species featured a dorsoventrally asymmetric photoreceptor distribution with higher photoreceptor densities in the ventral retina. This dorsoventral asymmetry may provide greater spatial summation of visual information in the dorsal visual field. Burrow-dwelling species had significantly larger eyes, higher total numbers of retinal cells, higher photoreceptor densities in the ventral retina, and higher spatial resolving power than rock-dwelling species. C. pictus, a secondary burrow-dwelling species, was the only species that changed burrow usage over evolutionary time, and its retinal organization revealed features more similar to rock-dwelling species than other burrow-dwelling species. This suggests that phylogeny may play a substantial role in shaping retinal organization in Ctenophorus species compared to microhabitat occupation.


Subject(s)
Biodiversity , Ecosystem , Lizards/physiology , Photoreceptor Cells/physiology , Retina/physiology , Animals , Corneal Topography/methods , Lizards/anatomy & histology , Photoreceptor Cells/chemistry , Retina/anatomy & histology , Retina/chemistry
15.
Mol Biol Evol ; 37(3): 811-827, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31770430

ABSTRACT

The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date. We used microspectrophotometry to measure the spectral absorbance of the visual pigments in the outer segments of individual photoreceptors from several ray and shark species, and we sequenced the opsin mRNAs obtained from the retinas of the same species, as well as from additional elasmobranch species. We reveal the phylogenetically widespread occurrence of dichromatic color vision in rays based on two cone opsins, RH2 and LWS. We also confirm that all shark species studied to date appear to be cone monochromats but report that in different species the single cone opsin may be of either the LWS or the RH2 class. From this, we infer that cone monochromacy in sharks has evolved independently on multiple occasions. Together with earlier discoveries in secondarily aquatic marine mammals, this suggests that cone-based color vision may be of little use for large marine predators, such as sharks, pinnipeds, and cetaceans.


Subject(s)
Opsins/genetics , Opsins/metabolism , Retina/metabolism , Sharks/metabolism , Skates, Fish/metabolism , Animals , Color Vision , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Profiling , Microspectrophotometry , Phylogeny , Retinal Cone Photoreceptor Cells/metabolism , Sequence Analysis, RNA , Sharks/genetics , Skates, Fish/genetics
16.
J Exp Biol ; 222(Pt 14)2019 07 25.
Article in English | MEDLINE | ID: mdl-31345949

ABSTRACT

The viviparous sea snakes (Hydrophiinae) are a secondarily aquatic radiation of more than 60 species that possess many phenotypic adaptations to marine life. However, virtually nothing is known of the role and sensitivity of hearing in sea snakes. This study investigated the hearing sensitivity of the fully marine sea snake Hydrophis stokesii by measuring auditory evoked potential (AEP) audiograms for two individuals. AEPs were recorded from 40 Hz (the lowest frequency tested) up to 600 Hz, with a peak in sensitivity identified at 60 Hz (163.5 dB re. 1 µPa or 123 dB re. 1 µm s-2). Our data suggest that sea snakes are sensitive to low-frequency sounds but have relatively low sensitivity compared with bony fishes and marine turtles. Additional studies are required to understand the role of sound in sea snake life history and further assess these species' vulnerability to anthropogenic noise.


Subject(s)
Evoked Potentials, Auditory , Hearing/physiology , Hydrophiidae/physiology , Animals
17.
Sci Rep ; 9(1): 6924, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061394

ABSTRACT

The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less 'inquisitive' behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa.


Subject(s)
Behavior, Animal , Sharks , Sound , Water , Animals , Immersion , Species Specificity , Swimming
18.
J Exp Biol ; 222(Pt 12)2019 06 19.
Article in English | MEDLINE | ID: mdl-31138641

ABSTRACT

Vision is crucial for animals to find prey, locate conspecifics and navigate within cluttered landscapes. Animals need to discriminate objects against a visually noisy background. However, the ability to detect spatial information is limited by eye size. In insects, as individuals become smaller, the space available for the eyes reduces, which affects the number of ommatidia, the size of the lens and the downstream information-processing capabilities. The evolution of small body size in a lineage, known as miniaturisation, is common in insects. Here, using pattern electroretinography with vertical sinusoidal gratings as stimuli, we studied how miniaturisation affects spatial resolving power and contrast sensitivity in four diurnal ants that live in a similar environment but vary in their body and eye size. We found that ants with fewer and smaller ommatidial facets had lower spatial resolving power and contrast sensitivity. The spatial resolving power was maximum in the largest ant Myrmecia tarsata at 0.60 cycles deg-1 compared with that of the ant with smallest eyes Rhytidoponera inornata at 0.48 cycles deg-1 Maximum contrast sensitivity (minimum contrast threshold) in M. tarsata (2627 facets) was 15.51 (6.4% contrast detection threshold) at 0.1 cycles deg-1, while the smallest ant R. inornata (227 facets) had a maximum contrast sensitivity of 1.34 (74.1% contrast detection threshold) at 0.05 cycles deg-1 Miniaturisation thus dramatically decreases maximum contrast sensitivity and also reduces spatial resolution, which could have implications for visually guided behaviours. This is the first study to physiologically investigate contrast sensitivity in the context of insect allometry.


Subject(s)
Ants/physiology , Visual Perception , Animals , Contrast Sensitivity , Miniaturization , Species Specificity
19.
eNeuro ; 6(1)2019.
Article in English | MEDLINE | ID: mdl-30820446

ABSTRACT

Mutations in the KCNV2 gene, which encodes the voltage-gated K+ channel protein Kv8.2, cause a distinctive form of cone dystrophy with a supernormal rod response (CDSRR). Kv8.2 channel subunits only form functional channels when combined in a heterotetramer with Kv2.1 subunits encoded by the KCNB1 gene. The CDSRR disease phenotype indicates that photoreceptor adaptation is disrupted. The electroretinogram (ERG) response of affected individuals shows depressed rod and cone activity, but what distinguishes this disease is the supernormal rod response to a bright flash of light. Here, we have utilized knock-out mutations of both genes in the mouse to study the pathophysiology of CDSRR. The Kv8.2 knock-out (KO) mice show many similarities to the human disorder, including a depressed a-wave and an elevated b-wave response with bright light stimulation. Optical coherence tomography (OCT) imaging and immunohistochemistry indicate that the changes in six-month-old Kv8.2 KO retinae are largely limited to the outer nuclear layer (ONL), while outer segments appear intact. In addition, there is a significant increase in TUNEL-positive cells throughout the retina. The Kv2.1 KO and double KO mice also show a severely depressed a-wave, but the elevated b-wave response is absent. Interestingly, in all three KO genotypes, the c-wave is totally absent. The differential response shown here of these KO lines, that either possess homomeric channels or lack channels completely, has provided further insights into the role of K+ channels in the generation of the a-, b-, and c-wave components of the ERG.


Subject(s)
Cone Dystrophy/metabolism , Potassium Channels, Voltage-Gated/metabolism , Retina/metabolism , Shab Potassium Channels/metabolism , Animals , Cone Dystrophy/diagnostic imaging , Cone Dystrophy/pathology , Female , Gene Knockout Techniques , Mice, Inbred C57BL , Mice, Knockout , Mutation , Potassium Channels, Voltage-Gated/genetics , Retina/diagnostic imaging , Retina/pathology , Shab Potassium Channels/genetics , Synaptic Transmission , Vision, Ocular/physiology
20.
PLoS One ; 14(3): e0212851, 2019.
Article in English | MEDLINE | ID: mdl-30856187

ABSTRACT

Personal shark deterrents offer the potential of a non-lethal solution to protect individuals from negative interactions with sharks, but the claims of effectiveness of most deterrents are based on theory rather than robust testing of the devices themselves. Therefore, there is a clear need for thorough testing of commercially available shark deterrents to provide the public with information on their effectiveness. Using a modified stereo-camera system, we quantified behavioural interactions between Carcharodon carcharias (white sharks) and a baited target in the presence of a commercially available electric anklet shark deterrent, the Electronic Shark Defense System (ESDS). The stereo-camera system enabled accurate assessment of the behavioural responses of C. carcharias when approaching an ESDS. We found that the ESDS had limited meaningful effect on the behaviour of C. carcharias, with no significant reduction in the proportion of sharks interacting with the bait in the presence of the active device. At close proximity (< 15.5 cm), the active ESDS did show a significant reduction in the number of sharks biting the bait, but this was countered by an increase in other, less aggressive, interactions. The ESDS discharged at a frequency of 7.8 Hz every 5.1 s for 2.5 s, followed by an inactive interval of 2.6 s. As a result, many sharks may have encountered the device in its inactive state, resulting in a reduced behavioural response. Consequently, decreasing the inactive interval between pulses may improve the overall effectiveness of the device, but this would not improve the effective deterrent range of the device, which is primarily a factor of the voltage gradient rather than the stimulus frequency. In conclusion, given the very short effective range of the ESDS and its unreliable deterrent effect, combined with the fact that shark-bite incidents are very rare, it is unlikely that the current device would significantly reduce the risk of a negative interaction with C. carcharias.


Subject(s)
Bites and Stings/prevention & control , Predatory Behavior , Sharks/physiology , Wearable Electronic Devices , Animals , Behavior Observation Techniques/methods , Female , Humans , Indian Ocean , Motor Activity/physiology , Remote Sensing Technology/methods , South Africa , Video Recording/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...