Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Min Metall Explor ; 36(6): 1201-1211, 2019 12.
Article in English | MEDLINE | ID: mdl-31768500

ABSTRACT

A ventilation research study was conducted by the National Institute for Occupational Safety and Health and a cooperating trona mine in the Green River basin of Wyoming, USA. The mine operation uses the longwall mining method in trona bed 17, a commonly mined unit in the region. The longwall face length is 228 m (750 ft), and caving on the face occurred up to the back of the longwall shields. The mine is ventilated using a main blowing fan and a bleeder shaft. For this study, sulfur hexafluoride (SF6) tracer gas was released in two separate monitoring experiments. For the first experiment, tracer gas was released on the face, this test focused on airflow along the longwall face of the active panel. Face test showed the airflow patterns to be more complex than just head-to-tail flow in the main ventilation air stream on the active panel. For the second experiment, tracer gas was released 2 crosscuts inby the face on the headgate side, this test focused on gas transport in the mined-out portion of the same active panel. Gob test showed a pathway of movement through the front of the active panel gob that moved outby from the tailgate corner. The primary pathway of tracer gas movement in the active panel gob was towards the headgate and tailgate bleeders and out of a bleeder shaft. The rate of movement towards the back of the gob was measured to be 0.19 m/s (37 fpm).

2.
Min Metall Explor ; 36(4): 729-740, 2019 08.
Article in English | MEDLINE | ID: mdl-31187091

ABSTRACT

In longwall mining, ventilation is considered one of the more effective means for controlling gases and dust. In order to study longwall ventilation in a controlled environment, researchers built a unique physical model called the Longwall Instrumented Aerodynamic Model (LIAM) in a laboratory at the National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Mining Research Division (PMRD) campus. LIAM is a 1:30 scale physical model geometrically designed to simulate a single longwall panel with a three-entry headgate and tailgate configuration, along with three back bleeder entries. It consists of a two-part heterogeneous gob that simulates a less compacted unconsolidated zone and more compacted consolidated zone. It has a footprint of 8.94 m (29 ft.) by 4.88 m (16 ft.), with a simulated face length of 220 m (720 ft.) in full scale. LIAM is built with critical details of the face, gob, and mining machinery. It is instrumented with pressure gauges, flow anemometers, temperature probes, a fan, and a data acquisition system. Scaling relationships are derived on the basis of Reynolds and Richardson numbers to preserve the physical and dynamic similitude. This paper discusses the findings from a study conducted in the LIAM to investigate the gob-face interaction, airflow patterns within the gob, and airflow dynamics on the face for varying roof caving characteristics. Results are discussed to show the impact of caving behind the shields on longwall ventilation.

3.
Min Eng ; 70(2): 37-40, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29674789

ABSTRACT

In 1995 and 2003, the U.S. Mine Safety and Health Administration (MSHA) conducted surveys to determine the number of atmospheric monitoring systems (AMS) that were being used in underground coal mines in the United States. The survey reports gave data for the different AMS manufacturers, the different types of equipment monitored, and the different types of gas sensors and their locations. Since the last survey in 2003, MSHA has changed the regulation requirements for early fire detection along belt haulage entries. As of Dec. 31, 2009, point-type heat sensors are prohibited for use for an early fire detection system. Instead, carbon monoxide (CO) sensors are now required. This report presents results from a new survey and examines how the regulation changes have had an impact on the use of CO sensors in underground coal mines in the United States. The locations and parameters monitored by AMS and CO systems are also discussed.

4.
Min Eng ; 68(1): 40-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26877552

ABSTRACT

The objective of this study was to develop a laboratory-scale method to rank the ignition and fire hazards of commonly used underground mine materials and to eliminate the need for the expensive large-scale tests that are currently being used. A radiant-panel apparatus was used to determine the materials' relevant thermal characteristics: time to ignition, critical heat flux for ignition, heat of gasification, and mass-loss rate. Three thermal parameters, TRP, TP1 and TP4, were derived from the data, then developed and subsequently used to rank the combined ignition and fire hazards of the combustible materials from low hazard to high hazard. The results compared favorably with the thermal and ignition hazards of similar materials reported in the literature and support this approach as a simpler one for quantifying these combustible hazards.

SELECTION OF CITATIONS
SEARCH DETAIL
...