Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(6): 9579-9590, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157525

ABSTRACT

We design and experimentally demonstrate an optical switch based on the interference of plasmonic modes in whispering gallery mode (WGM) antennas. Simultaneous excitation of even and odd WGM modes, enabled by a small symmetry breaking via non-normal illumination, allows switching the plasmonic near field between opposite sides of the antenna, depending on the excitation wavelength used in a wavelength range of 60 nm centered around 790 nm. This proposed switching mechanism is experimentally demonstrated by combining photoemission electron microscopy (PEEM) with a tunable wavelength femtosecond laser source in the visible and infrared.

2.
Nat Commun ; 13(1): 3324, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680865

ABSTRACT

The strength of light-matter interaction in condensed matter is fundamentally linked to the orientation and oscillation strength of the materials' optical transition dipoles. Structurally anisotropic materials, e.g., elongated molecules, exhibit optical transition dipoles with fixed orientations that govern the angular-dependent light-matter interaction. Contrary, free electron-like metals should exhibit isotropic light-matter interaction with the light fields dictating the orientation of the optical transition dipoles. Here, we demonstrate that an anisotropic direction of the optical transition dipoles even exists in highly free electron-like noble metal surfaces. Our time- and phase-resolved photoemission experiment reveals coherent interference effects on the (110)-oriented silver surface after optical excitation with two non-interfering cross-polarized pulses. We explain this coherent material response within the density matrix formalism by an intrinsic coupling of the non-interfering light fields mediated by optical transition dipoles with fixed orientations in silver.

3.
ACS Nano ; 15(12): 19559-19569, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34852458

ABSTRACT

Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons, this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from that of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved photoemission electron microscopy (PEEM) and momentum microscopy during the propagation of a surface plasmon polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement toward high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.

4.
Sci Adv ; 7(33)2021 Aug.
Article in English | MEDLINE | ID: mdl-34380618

ABSTRACT

Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.

5.
Nano Lett ; 21(9): 3941-3946, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33939433

ABSTRACT

Surface plasmon polaritons carrying orbital angular momentum are of great fundamental and applied interest. However, common approaches for their generation are restricted to having a weak dependence on the properties of the plasmon-generating illumination, providing a limited degree of control over the amount of delivered orbital angular momentum. Here we experimentally show that by tailoring local and global geometries of vortex generators, a change in helicity of light imposes arbitrary large switching in the delivered plasmonic angular momentum. Using time-resolved photoemission electron microscopy we demonstrate pristine control over the generation and rotation direction of high-order plasmonic vortices. We generalize our approach to create complex topological fields and exemplify it by studying and controlling a "bright vortex", exhibiting the breakdown of a high-order vortex into a mosaic of unity-order vortices while maintaining the overall angular momentum density. Our results provide tools for plasmonic manipulation and could be utilized in lab-on-a-chip devices.

6.
Nano Lett ; 20(5): 3338-3343, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32216365

ABSTRACT

We compare the decay of plasmons and "conventional" hot electrons within the same series of gold/metal oxide interfaces. We found an accelerated decay of hot electrons at gold-metal oxide interfaces with decreasing band gap of the oxide material. The decay is accelerated by the increased phase space for electron scattering caused by additional interfacial states. Since plasmons decay faster within the same series of gold-metal oxide interfaces, we propose plasmons are able to decay into the same interfacial states as hot electrons. The similarity of plasmon damping to conventional hot electron decay implies that many classical surface analysis techniques and theoretical concepts are transferable to plasmonic systems. Our results support the mechanism of direct decay of plasmons into interfacial hot electron pairs but the utility of these interfacial states for charge transfer reactions remains to be investigated.

7.
Nanoscale ; 12(13): 7309-7314, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32202292

ABSTRACT

We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and far-field simulations demonstrate that this broadband enhancement is the result of a magneto-optically enabled cross-talking of orthogonal localized plasmon resonances. Our results pave the way to the on-demand design of the magneto-optical properties of hybrid magneto-plasmonic circuitry.

8.
Chest ; 129(6): 1424-31, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16778258

ABSTRACT

BACKGROUND: Noninvasive ventilation (NIV) is increasingly used in intensive care medicine, but only little information is available how different NIV interfaces affect the performance of a ventilatory system. Therefore, we compared delay times, pressure time products (PTPs), and wasted efforts during inspiration among patients receiving invasive ventilation and NIV with a helmet (NIV-h) or a face mask (NIV-fm). METHODS: Using an in vitro lung model capable of simulating spontaneous breathing, gas flow and airway pressure were measured with varying positive end-expiratory pressure and pressure support (PS) levels. Wasted efforts were determined while lung compliance, respiratory rate (RR), continuous positive airway pressure (CPAP), and PS levels were changed. RESULTS: Delay times were more than twice as long with a helmet compared to NIV-fm or invasive ventilation (p < 0.001), but decreased during NIV-h with increasing CPAP (p < 0.001) and PS levels (p < 0.001). During the initial inspiratory phase, PTP was smaller with NIV-h compared to NIV-fm or invasive ventilation, but not so when a complete inspiration with PS was evaluated. Wasted efforts occurred earlier during NIV-h and were aggravated with rising PS, RR, and compliance. CONCLUSIONS: Although delay times are prolonged during NIV-h, PTP is initially smaller compared to NIV-fm and invasive ventilation, indicating less work of breathing due to the high volume the patient can access. Increasing the CPAP or PS level decreases delay times in NIV-h and should therefore be considered whenever possible. Wasted inspiratory efforts occurred at higher RRs and should carefully be monitored during NIV.


Subject(s)
Head Protective Devices , Masks , Positive-Pressure Respiration/instrumentation , Respiratory Mechanics/physiology , Respiratory System/physiopathology , Humans , Lung Compliance/physiology , Models, Biological , Positive-Pressure Respiration/methods , Work of Breathing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...